• Title/Summary/Keyword: quaternion

Search Result 188, Processing Time 0.035 seconds

DETERMINANTAL EXPRESSION OF THE GENERAL SOLUTION TO A RESTRICTED SYSTEM OF QUATERNION MATRIX EQUATIONS WITH APPLICATIONS

  • Song, Guang-Jing
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.4
    • /
    • pp.1285-1301
    • /
    • 2018
  • In this paper, we mainly consider the determinantal representations of the unique solution and the general solution to the restricted system of quaternion matrix equations $$\{{A_1X=C_1\\XB_2=C_2,}\;{{\mathcal{R}}_r(X){\subseteq}T_1,\;{\mathcal{N}}_r(X){\supseteq}S_1$$, respectively. As an application, we show the determinantal representations of the general solution to the restricted quaternion matrix equation $$AX+Y B=E,\;{\mathcal{R}}_r(X){\subseteq}T_1,\;{\mathcal{N}}_(X){\supseteq}S_1,\;{\mathcal{R}}_l(Y){\subseteq}T_2,\;{\mathcal{N}}_l (Y){\supseteq}S_2$$. The findings of this paper extend some known results in the literature.

RANKS OF SUBMATRICES IN A GENERAL SOLUTION TO A QUATERNION SYSTEM WITH APPLICATIONS

  • Zhang, Hua-Sheng;Wang, Qing-Wen
    • Bulletin of the Korean Mathematical Society
    • /
    • v.48 no.5
    • /
    • pp.969-990
    • /
    • 2011
  • Assume that X, partitioned into $2{\times}2$ block form, is a solution of the system of quaternion matrix equations $A_1XB_1$ = $C_1,A_2XB_2=C_2$. We in this paper give the maximal and minimal ranks of the submatrices in X, and establish necessary and sufficient conditions for the submatrices to be zero, unique as well as independent. As applications, we consider the common inner inverse G, partitioned into $2{\times}2$ block form, of two quaternion matrices M and N. We present the formulas of the maximal and minimal ranks of the submatrices of G, and describe the properties of the submatrices of G as well. The findings of this paper generalize some known results in the literature.

Steering Control Algorithm of a Locomotion Robot Using a Quaternion with Spherical Cubic Interpolation (ICCAS 2005)

  • Chung, Won-Jee;Kim, Ki-Jung;Seo, Young-Kyo;Lee, Ki-Sang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.658-663
    • /
    • 2005
  • This paper presents the steering control algorithm of a locomotion robot using a quaternion. The locomotion robot is to be moved on an irregular floor that can inevitably result in the errors of both position and orientation. Especially the orientation error should be compensated every work in order to adjust the misaligned values of current orientation to those commanded values. In this paper, we propose a new steering control algorithm between the two values by using a quaternion with spherical cubic interpolation. The proposed algorithm is shown to be effective in terms of vibration when compared to a conventional simple compensation without interpolation, by using $MATLAB^{(R)}$ and $VisualNastran4D^{(R)}$.

  • PDF

A Comparison Study of Real-Time Solution to All- Attitude Angles of an Aircraft

  • Shin Sung-Sik;Lee Jung-Hoon;Yoon Sug-Joon
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.376-381
    • /
    • 2006
  • In this paper, the quaternion, the dual Euler, and the direction cosine methods are numerically compared using a non-aerodynamic 6 degree-of-freedom rigid model at all-attitude angles of an aircraft. The dual Euler method turns out to be superior to the others in the applications because it shows better numerical accuracy, stability, and robustness in integration step sizes. The dual Euler method is affordably less efficient than the quaternion method in terms of computational cost. Numerical accuracy and stability, which allow larger integration step sizes, are more critical in modern real-time applications than computational efficiency because of today's increased computational power. If the quaternion method is required because of constraints in computation time, then a suppression mechanism should be provided for algebraic constraint errors which will eventually add computational burden.

Performance Analysis of Quaternion-based Least-squares Methods for GPS Attitude Estimation (GPS 자세각 추정을 위한 쿼터니언 기반 최소자승기법의 성능평가)

  • Won, Jong-Hoon;Kim, Hyung-Cheol;Ko, Sun-Jun;Lee, Ja-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2092-2095
    • /
    • 2001
  • In this paper, the performance of a new alternative form of three-axis attitude estimation algorithm for a rigid body is evaluated via simulation for the situation where the observed vectors are the estimated baselines of a GPS antenna array. This method is derived based on a simple iterative nonlinear least-squares with four elements of quaternion parameter. The representation of quaternion parameters for three-axis attitude of a rigid body is free from singularity problem. The performance of the proposed algorithm is compared with other eight existing methods, such as, Transformation Method (TM), Vector Observation Method (VOM), TRIAD algorithm, two versions of QUaternion ESTimator (QUEST), Singular Value Decomposition (SVD) method, Fast Optimal Attitude Matrix (FOAM), Slower Optimal Matrix Algorithm (SOMA).

  • PDF

ON THE CERTAIN PRIMITIVE ORDERS

  • Jun, Sung-Tae
    • Journal of the Korean Mathematical Society
    • /
    • v.34 no.4
    • /
    • pp.791-807
    • /
    • 1997
  • There are several kinds of orders in a quaternion algebra. In this article, the relation between the orders is studied.

  • PDF

Position-Attitude Coupling Motion Using Dual Quaternion in Spacecraft Proximity Operation (듀얼 쿼터니언을 이용한 인공위성 근접운용에서의 위치-자세 결합운동 연구)

  • Na, Yunju;Bang, Hyochoong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.11
    • /
    • pp.795-802
    • /
    • 2019
  • This paper deals with position-attitude coupling motion during spacecraft relative operation, and suggests dual quaternion-based kinematics for the problem. The position-attitude coupling motion can occur when the target point is located at an arbitrary point on the satellite body, not the center of mass. This is especially apparent in close proximity operation case. The dual quaternion-based kinematics directly reflects the angular velocity state, so that the coupling motion in which the change of attitude affects the position can be concisely defined. In this study, a new dual quaternion-based kinematics is presented along with a conventional approach to solve the coupling problem. Numerical simulations show that the position error for the target point is generated by the coupling motion, and verify that the dual quaternion-based kinematics can solve this problem.

Theta series by primitive orders

  • Jun, Sung-Tae
    • Communications of the Korean Mathematical Society
    • /
    • v.10 no.3
    • /
    • pp.583-602
    • /
    • 1995
  • With the theory of a certain type of orders in a Quaternion algebra, we construct Brandt matrices and theta series. As a application, we calculate the class number of a certain type of orders in a Quanternion algebra with the trace formular of Brandt matrices.

  • PDF