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RANKS OF SUBMATRICES IN A GENERAL SOLUTION TO

A QUATERNION SYSTEM WITH APPLICATIONS

Hua-Sheng Zhang and Qing-Wen Wang

Abstract. Assume thatX, partitioned into 2×2 block form, is a solution
of the system of quaternion matrix equations A1XB1 = C1, A2XB2 =
C2. We in this paper give the maximal and minimal ranks of the sub-

matrices in X, and establish necessary and sufficient conditions for the
submatrices to be zero, unique as well as independent. As applications,
we consider the common inner inverse G, partitioned into 2 × 2 block

form, of two quaternion matrices M and N. We present the formulas of
the maximal and minimal ranks of the submatrices of G, and describe
the properties of the submatrices of G as well. The findings of this paper
generalize some known results in the literature.

1. Introduction

Throughout this paper, R stands for the real number field, Hm×n represents
the set of all m× n matrices over the quaternion algebra

H = {a0 + a1i+ a2j + a3k | i2 = j2 = k2 = ijk = −1, a0, a1, a2, a3 ∈ R}.

For a matrix A over H, we denote the transpose of A by AT , the column
right space, the row left space of A by R (A), N (A) , respectively, an inner
inverse of A by A− which satisfies AA−A = A. Moreover, RA and LA stand
for the two projectors LA = I − A−A, RA = I − AA− induced by A. In [2],
dimR (A) = dimN (A) , which is called the rank of A and denoted by r(A). I
stands for the identity matrix with the appropriate size.

Consider the classical system of matrix equations

(1.1) A1XB1 = C1, A2XB2 = C2,
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where A1, A2 ∈ Hm×k, B1, B2 ∈ Hl×n and C1, C2 ∈ Hm×n are known and X
unknown. Partitioning a solution X of (1.1) into 2 × 2 block form, we have
that

(1.2)

[A11, A12]

[
X1 X2

X3 X4

] [
B11

B12

]
= C1,

[A21, A22]

[
X1 X2

X3 X4

] [
B21

B22

]
= C2,

where X1 ∈ Hk1×l1 , X2 ∈ Hk1×l2 , X3 ∈ Hk2×l1 and X4 ∈ Hk2×l2 , k1 + k2 =
k, l1 + l2 = l.

We know that the system (1.1) has been investigated by many authors from
different aspects (see, e.g., [4]-[15]). For example, Mitra [4] first considered

it over the complex field in 1973. Özgüler and Akar [6] gave some solvability
conditions for the consistency of the system over a principle domain in 1991.
Wang [14] derived necessary and sufficient conditions for the existence and the
expression for the general solution to the system over arbitrary regular rings
with identity in 2004. Yan and Liao in 2008 investigated the least squares
Hermitian solution to the system over H. Wang [15] established necessary
and sufficient conditions for the existence and the expressions for the general
real solutions to (1.1) over H. Moreover, Dehghan and Hajarian [1] in 2008
considered the generalized centro-symmetric solutions to (1.1) by an iterative
algorithm.

Extreme ranks of general solutions to linear matrix equations have been
actively ongoing for many years. For instance, Uhlig proposed maximal and
minimal possible ranks of solutions of the equation AX = B in [11]. Liu [3]
gave some formulas for the extreme ranks of the submatrices in a solution X
to the system of complex matrix equations AX = C,XB = D in 2008. In
2009, Tian [7] gave some formulas for the extreme ranks of the submatrices in
a solution X to the complex matrix equation AXB = C. Noticing that so far
there has been little information on the extreme ranks, i.e., the maximal and
minimal ranks of the submatrices in a solution X to (1.1), we in this paper aim
to investigate the extremal ranks of submatrices in a solution to (1.1) over H.

The paper is organized as follows. In Section 2, we first give formulas of the
extreme ranks of matrices Xi (i = 1, 2, 3, 4) in (1.2), and characterize structure
of solutions to (1.2), then establish necessary and sufficient conditions for the
uniqueness of the submatrices Xi (i = 1, 2, 3, 4) in (1.2), and consider the inde-
pendence of submatrices in solutions to (1.2). As applications, we in Section 3
give the maximal and minimal ranks of the submatrices of the common inner
inverse G, partitioned into 2× 2 block form, of quaternion matrices M and N ,
and describe the properties of the submatrices of G. The results in this paper
generalize the results in [7] and [3].
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2. Extreme ranks and the independence of submatrices in solutions
to (1.2)

We begin with the following lemmas whose proofs are just like those over
the complex field.

Lemma 2.1 ([5]). Let A,B and C be m × n,m × k, l × n matrices over H.
Then

(a) r[A,B] = r(A) + r(RAB) = r(B) + r(RBA),

(b) r

[
A
C

]
= r(A) + r(CLA) = r(C) + r(ALC),

(c) r

[
A B
C 0

]
= r(B) + r(C) + r(RBALC).

Lemma 2.2 ([8]). Suppose that the system (1.1) is consistent. Then the general
solution of (1.1) can be expressed as

(2.1) X = X0 + LAV1 + V2RB + LA1V3RB2 + LA2V4RB1 ,

where X0 is a particular solution to (1.1), A =
[
A1

A2

]
, B = [B1, B2] are known

and V1 − V4 are arbitrary matrices with appropriate dimensions.

Lemma 2.3 ([9]). Let p (X1, X2) = A−B1X1C1 −B2X2C2 be given. Then
(2.2)

max
X1,X2

r [p (X1, X2)] = min

{
r [A,B1, B2] , r

 A
C1

C2

 , r

[
A B1

C2 0

]
, r

[
A B2

C1 0

]}
,

and
(2.3)

min
X1,X2

r [p (X1, X2)]

= r [A,B1, B2] + r

 A
C1

C2

+max

{
r

[
A B1

C2 0

]
− r

[
A B1 B3

C2 0 0

]

−r

 A B1

C1 0
C2 0

 , r

[
A B2

C1 0

]
− r

[
A B1 B2

C1 0 0

]
− r

 A B2

C1 0
C2 0

 .

Lemma 2.4 (see [9]). Let p (X1, X2) = A−B1X1C1 −B2X2C2, and

R (B1) ⊆ R (B2) ,R
(
CT

2

)
⊆ R

(
CT

1

)
be given. Then
(2.4)

min
X1,X2

r [p (X1, X2)]

= r [A,B2] + r

[
A
C1

]
+ r

[
A B1

C2 0

]
− r

[
A B1

C1 0

]
− r

[
A B2

C2 0

]
.
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Lemma 2.5. Let

(2.5) p (X1, X2, X3, X4) = A−B1X1C1 −B2X2C2 −B3X3C3 −B4X4C4

be a linear matrix expression with four two-sided terms over H, and suppose
that the given matrices satisfy the conditions

(2.6) R (Bi) ⊆ R (B2) , R
(
CT

j

)
⊆ R

(
CT

1

)
, i = 1, 3, 4, j = 2, 3, 4.

Then

min
Xi

r [p (X1, X2, X3, X4)](2.7)

= r


A B1

C2 0
C3 0
C4 0

+ r

[
A B1 B3 B4

C2 0 0 0

]
+ r

[
A
C1

]
+ r [A,B2]

− r

[
A B1

C1 0

]
− r

[
A B2

C2 0

]

+max

r

 A B1 B3

C2 0 0
C4 0 0

− r

 A B1 B3 B4

C2 0 0 0
C4 0 0 0



−r


A B1 B3

C2 0 0
C3 0 0
C4 0 0

 ,

r

 A B1 B4

C2 0 0
C3 0 0

− r

 A B1 B3 B4

C2 0 0 0
C3 0 0 0



−r


A B1 B4

C2 0 0
C3 0 0
C4 0 0




and

max
Xi

r [p (X1, X2, X3, X4)](2.8)

= min

r [A,B2] , r

[
A
C1

]
, r


A B1

C2 0
C3 0
C4 0

 , r

[
A B1 B3 B4

C2 0 0 0

]
,

r

 A B1 B3

C2 0 0
C4 0 0

 , r

 A B1 B4

C2 0 0
C3 0 0

 .
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Proof. We only show (2.7). Under the assumption (2.6), substituting (2.4) into
the two variant matrices X1 and X2 in (2.5) yields

min
Xi,X2

r [p (X1, X2, X3, X4)]

(2.9)

= r [A−B3X3C3 −B4X4C4, B2] + r

[
A−B3X3C3 −B4X4C4

C1

]
+ r

[
A−B3X3C3 −B4X4C4 B1

C2 0

]
− r

[
A−B3X3C3 −B4X4C4 B1

C1 0

]
− r

[
A−B3X3C3 −B4X4C4 B2

C2 0

]
= r [A,B2] + r

[
A
C1

]
− r

[
A B1

C1 0

]
− r

[
A B2

C2 0

]
+ r

[
A−B3X3C3 −B4X4C4 B1

C2 0

]
.

It is easy to see that[
A−B3X3C3 −B4X4C4 B1

C2 0

]
=

[
A B1

C2 0

]
−

[
B3

0

]
X3 [C3, 0]−

[
B4

0

]
X4 [C4, 0] .

In that case, applying (2.3) to it and then putting the corresponding results in
(2.9) yields (2.7).

Similarly, we can prove (2.8). □

Using Lemma 2.5, we can get the following two lemmas easily.

Lemma 2.6. Suppose that the system (1.1) has a solution. Then the maximal
rank of C3 −A3XB3 subject to (1.1) is the following:

max
A1XB1=C1,A2XB2=C2

r(C3 −A3XB3)(2.10)

= min

{
r [C3, A3] , r

[
C3

B3

]
, s1, s2, s3, s4

}
,

where

s1 = r


C3 0 0 A3

0 −C1 0 A1

0 0 −C2 A2

B3 B1 0 0
B3 0 B2 0

− r

[
A1

A2

]
− r (B1)− r (B2) ,
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s2 = r


C3 0 0 A3 A3

0 −C1 0 A1 0
0 0 −C2 0 A2

B3 B1 B2 0 0

− r [B1, B2]− r (A1)− r (A2) ,

s3 = r

 C3 0 A3

0 −C1 A1

B3 B1 0

− r (A1)− r (B1) ,

s4 = r

 C3 0 A3

0 −C2 A2

B3 B2 0

− r (A2)− r (B2) .

Lemma 2.7. Suppose that the system (1.1) has a solution. Then the minimal
rank of C3 −A3XB3 subject to (1.1) is

min
A1XB1=C1,A2XB2=C2

r(C3 −A3XB3)(2.11)

= r


C3 0 0 A3

0 −C1 0 A1

0 0 −C2 A2

B3 B1 0 0
B3 0 B2 0

+ r


C3 0 0 A3 A3

0 −C1 0 A1 0
0 0 −C2 0 A2

B3 B1 B2 0 0



− r


C3 A3

B3 0
0 A1

0 A2

− r

[
C3 A3 0 0
B3 0 B1 B2

]
+ r

[
C3

B3

]
+ r [C3, A3]

+ max {t1, t2} ,

where

t1 = r

 C3 0 A3

0 −C1 A1

B3 B1 0

− r


C3 0 A3 A3

0 −C1 A1 0
B3 B1 0 0
0 0 0 A2

− r


C3 0 A3 0
0 −C1 A1 0
B3 B1 0 0
B3 0 0 B2

,

t2 = r

 C3 0 A3

0 −C2 A2

B3 B2 0

− r


C3 0 A3 A3

0 −C2 A2 0
B3 B2 0 0
0 0 0 A1

− r


C3 0 A3 0
0 −C2 A2 0
B3 B2 0 0
B3 0 0 B1

.
For convenience, we adopt the following notations for the collections of the

submatrices Xi (i = 1, 2, 3, 4) in (1.2)

(2.12) Si =

Xi

∣∣∣∣∣∣∣∣
[A11, A12]

[
X1 X2

X3 X4

] [
B11

B12

]
= C1,

[A21, A22]

[
X1 X2

X3 X4

] [
B21

B22

]
= C2

 , i = 1, 2, 3, 4.
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Obviously, Xi (i = 1, 2, 3, 4) in (1.1) can be written as

(2.13) X1 = [Ik1 , 0]X

[
Il1
0

]
= P1XQ1, X2 = [Ik1 , 0]X

[
0
Il1

]
= P1XQ2,

(2.14) X3 = [0, Ik2 ]X

[
Il1
0

]
= P2XQ1, X4 = [0, Ik2 ]X

[
0
Il2

]
= P2XQ2.

According to Lemma 2.2, the general solution to the consistent system (1.1)
can be denoted as

X = X0 + LAV1 + V2RB + LA1V3RB2 + LA2V4RB1 .

Substituting it into (2.13) and (2.14), we can get the general expressions of
Xi (i = 1, 2, 3, 4) as follows

X1 = P1X0Q1 + P1LAV11 + V21RBQ1 + P1LA1V3RB2Q1 + P1LA2V4RB1Q1,
(2.15)

X2 = P1X0Q2 + P1LAV12 + V21RBQ2 + P1LA1V3RB2Q2 + P1LA2V4RB1Q2,
(2.16)

X3 = P2X0Q1 + P2LAV11 + V22RBQ1 + P2LA1V3RB2Q1 + P2LA2V4RB1Q1,
(2.17)

X4 = P2X0Q2 + P1LAV12 + V22RBQ2 + P2LA1V3RB2Q2 + P2LA2V4RB1Q2,
(2.18)

where X0 is a particular common solution of (1.1), A =
[
A1

A2

]
, B = [B1, B2] are

known, and V1 = [V11, V12] , V2 = [V21, V22] , V3, V4 are arbitrary.

Theorem 2.8. Assume that the system (1.2) has a solution. Then

(2.19) max
X1∈S1

r(X1) = min {k1, l1, ŝ1, ŝ2, ŝ3, ŝ4} ,

(2.20) min
X1∈S1

r(X1) = t̂1 + t̂2 + k1 + l1 +max
{
t̂3, t̂4

}
,

where

ŝ1 = r


−C1 0 A12

0 −C2 A22

B12 0 0
−B21 B21 0
0 B22 0

− r

[
A11 A12

A21 A22

]
− r

[
B11

B12

]
− r

[
B21

B22

]
,

ŝ2 = r

 −C1 0 A12 −A11 0
0 −C2 0 A21 A22

B12 B22 0 0 0

− r

[
B11 B21

B12 B22

]
− r [A11, A12]− r [A21, A22] ,

ŝ3 = r

[
−C1 A12

B12 0

]
− r [A11, A12]− r

[
B11

B12

]
,
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ŝ4 = r

[
−C2 A22

B22 0

]
− r [A21, A22]− r

[
B21

B22

]
,

t̂1 = r


−C1 0 A12

0 −C2 A22

B12 0 0
−B21 B21 0
0 B22 0

− r

[
A12

A22

]
,

t̂2 = r

 −C1 0 A12 −A11 0
0 −C2 0 A21 A22

B12 B22 0 0 0

− r [B12, B22] ,

t̂3 = r

[
−C1 A12

B12 0

]
− r

 −C1 A12 −A11 0
B12 0 0 0
0 0 A21 A22



− r


−C1 A12 0
B12 0 0
−B11 0 B21

0 0 B22

− k1 − l1

and

t̂4 = r

[
−C2 A22

B22 0

]
− r

 −C2 A22 −A21 0
B22 0 0 0
0 0 A11 A12



− r


−C2 A22 0
B22 0 0
−B21 0 B11

0 0 B12

− k1 − l1.

Proof. It is easy to see that the maximal and minimal ranks of X1 in (1.2) is
the maximal and minimal ranks of P1XQ1 subject to the consistent system
(1.1). Applying (2.10) and (2.11) to X1 = P1XQ1 produces the following

(2.21) max
A1XB1=C1,A2XB2=C2

r(P1XQ1) = min {r (P1) , r (Q1) , ŝ1, ŝ2, ŝ3, ŝ4} ,

min
A1XB1=C1,A2XB2=C2

r(P1XQ1)(2.22)

= r


0 0 0 P1

0 −C1 0 A1

0 0 −C2 A2

Q1 B1 0 0
Q1 0 B2 0

− r


0 P1

Q1 0
0 A1

0 A2



− r

[
0 P1 0 0
Q1 0 B1 B2

]
+ r


0 0 0 P1 P1

0 −C1 0 A1 0
0 0 −C2 0 A2

Q1 B1 B2 0 0


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+ k1 + l1 +max
{
t̂1, t̂2

}
.

Putting the given matricesA1 = [A11, A12] , B1 =
[
B11

B12

]
, A2 = [A21, A22] , B2 =[

B21

B22

]
, P1 and Q1 in them and simplifying the ranks of the block matrices in

(2.21) and (2.22), we have

r


0 0 0 P1

0 −C1 0 A1

0 0 −C2 A2

Q1 B1 0 0
Q1 0 B2 0

 = r



0 0 0 Ik1 0
0 −C1 0 A11 A12

0 0 −C2 A21 A22

Il1 B11 0 0 0
0 B12 0 0 0
Il1 0 B21 0 0
0 0 B22 0 0



= r


−C1 0 A12

0 −C2 A22

B12 0 0
−B21 B21 0
0 B22 0

+ k1 + l1.

Similarly, we can obtain the desired formulas (2.19) and (2.20). □

Extreme ranks of the submatrices X2, X3 and X4 in (1.2) can be derived
by the similar approach. We omit them here for simplicity. The two rank
equalities in (2.19) and (2.20) can help us to get the necessary and sufficient
conditions for the existence of some special solutions to (1.2). We show them
in the following.

Corollary 2.9. Suppose that the system (1.2) has a solution. Then

(a) (1.2) has a solution with the form X =
[

0 X2

X3 X4

]
if and only if

r


−C1 0 A12

0 −C2 A22

B12 0 0
−B21 B21 0
0 B22 0

+ r

 −C1 0 A11 −A11 0
0 −C2 0 A21 A22

B12 B22 0 0 0



− r

[
A12

A22

]
− r [B12, B22] + k1 + l1

= max

r

 −C1 A12 −A11 0
B12 0 0 0
0 0 A21 A22

+r


−C1 A12 0
B12 0 0
−B11 0 B21

0 0 B22

−r

[
−C1 A12

B12 0

]
+ k1 + l1,

r

 −C1 A22 −A21 0
B22 0 0 0
0 0 A11 A12

+ r


−C1 A22 0
B22 0 0
−B21 0 B11

0 0 B12

− r

[
−C1 A22

B22 0

]
+ k1 + l1

 .
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(b) All the solutions of (1.2) have the form X =
[

0 X2

X3 X4

]
if and only if

r


−C1 0 A12

0 −C2 A22

B12 0 0
−B21 B21 0
0 B22 0

 = r

[
A11 A12

A21 A22

]
+ r

[
B11

B12

]
+ r

[
B21

B22

]
,

or

r

 −C1 0 A12 −A11 0
0 −C2 0 A21 A22

B12 B22 0 0 0


= r

[
B11 B21

B12 B22

]
+ r [A11, A12] + r [A21, A22] ,

or

r

[
−C1 A12

B12 0

]
= r [A11, A12] + r

[
B11

B12

]
,

or

r

[
−C2 A22

B22 0

]
= r [A21, A22] + r

[
B21

B22

]
.

Theorem 2.10. Assume that the system (1.2) has a solution. Then

(a) (1.2) has a solution with the form X =
[
X1 0
X3 0

]
if and only if

r


−C1 0
0 −C2

B11 0
0 B21

−B12 B22

+ r

 −C1 0 −A11 −A12

0 −C2 A21 A22

B11 B21 0 0

− r [B11, B21]

= max

r

 −C1 −A11 −A12

B11 0 0
0 A21 A22

+ r


−C1 0
B11 0
0 B21

−B12 B22

− r

[
−C1

B11

]
+ k + l2,

r

 −C1 −A21 −A22

B21 0 0
0 A11 A12

+ r


−C1 0
B21 0
0 B11

−B22 B12

− r

[
−C1

B21

]
+ k + l2

 .

(b) (1.2) has a solution with the form X =
[
X1 X2
0 0

]
if and only if

r


−C1 0 A11

0 −C2 A21

−B11 B21 0
−B12 B22 0

+r

[
−C1 0 A11 0 −A12

0 −C2 0 A21 A22

]
−r

[
A11

A21

]

=max

{
r

[
−C1 A11 0 −A12

0 0 A21 A22

]
+ r

 −C1 A11 0
−B11 0 B21

−B12 0 B22

− r [−C1, A11] + l + k2,



RANKS OF SUBMATRICES IN A GENERAL SOLUTION 979

r

[
−C1 A21 0 −A22

0 0 A11 A12

]
+ r

 −C1 A21 0
−B21 0 B11

−B22 0 B12

− r [−C1, A21] + l + k2

}
.

(c) (1.2) has a solution with the form X =
[
X1 0
0 0

]
if and only if

r


−C1 0
0 −C2

B11 0
0 B21

−B12 B22

+ r

 −C1 0 −A11 −A12

0 −C2 A21 A22

B11 B21 0 0

− r [B11, B21]

=max

r

 −C1 −A11 −A12

B11 0 0
0 A21 A22

+r


−C1 0
B11 0
0 B21

−B12 B22

−r

[
−C1

B11

]
+ k + l2,

r

 −C1 −A21 −A22

B21 0 0
0 A11 A12

+ r


−C1 0
B21 0
0 B11

−B22 B12

− r

[
−C1

B21

]
+ k + l2


and

r


−C1 0 A11

0 −C2 A21

−B11 B21 0
−B12 B22 0

+r

[
−C1 0 A11 0 −A12

0 −C2 0 A21 A22

]
−r

[
A11

A21

]

=max

{
r

[
−C1 A11 0 −A12

0 0 A21 A22

]
+r

 −C1 A11 0
−B11 0 B21

−B12 0 B22

−r [−C1, A11] + l + k2,

r

[
−C1 A21 0 −A22

0 0 A11 A12

]
+ r

 −C1 A21 0
−B21 0 B11

−B22 0 B12

− r [−C1, A21] + l + k2

}
.

Proof. According to (2.10) and (2.11), we have that

min
A1XB1=C1,A2XB2=C2

r

[
X2

X4

]
= min

A1XB1=C1,A2XB2=C2

r (XQ2)

= r


−C1 0
0 −C2

B11 0
0 B21

−B12 B22

+ r

 −C1 0 −A11 −A12

0 −C2 A21 A22

B11 B21 0 0

− r [B11, B21]

+ max

r

[
−C1

B11

]
− r

 −C1 −A11 −A12

B11 0 0
0 A21 A22

− r


−C1 0
B11 0
0 B21

−B12 B22

− k − l2,
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r

[
−C1

B21

]
− r

 −C1 −A21 −A22

B21 0 0
0 A11 A12

− r


−C1 0
B21 0
0 B11

−B22 B12

− k − l2

 ,

and

min
A1XB1=C1,A2XB2=C2

r [X3, X4]

= min
A1XB1=C1,A2XB2=C2

r (P2X)

= r


−C1 0 A11

0 −C2 A21

−B11 B21 0
−B12 B22 0

+r

[
−C1 0 A11 0 −A12

0 −C2 0 A21 A22

]
−r

[
A11

A21

]

+max

{
r
[
−C1 A11

]
−r

[
−C1 A11 0 −A12

0 0 A21 A22

]
−r

 −C1 A11 0
−B11 0 B21

−B12 0 B22

− l − k2,

r [−C1, A21]− r

[
−C1 A21 0 −A22

0 0 A11 A12

]
− r

 −C1 A21 0
−B21 0 B11

−B22 0 B12

− l − k2

}
.

Thus we have Part (a) and Part (b). Part (c) can be derived from Part (a) and
Part (b). □

Now we show the uniqueness of the submatrices X1, X2, X3 and X4 in (1.2),
which can be determined by (2.13) and (2.14).

Theorem 2.11. Assume that the system (1.2) has a solution. Then the subma-
trix X1 in (1.2) is unique if and only if (1.2) satisfies the following conditions:

r

[
A11

A21

]
= k1,R

[
A11

A21

]
∩R

[
A12

A22

]
= {0} ,

r [B11, B21] = l1,R [B11, B21]
T ∩R [B12, B22]

T
= {0} ,

r (A11) = k1,R (A11) ∩R (A12) = {0} ,
or

r (B21) = l1,R (B21)
T ∩R (B22)

T
= {0}

and

r (A21) = k1,R (A21) ∩R (A22) = {0} ,
or

r (B11) = l1,R (B11)
T ∩R (B12)

T
= {0} .

Proof. It follows from (2.15) thatX1 is unique if and only if P1LA = 0, RBQ1 =
0, P1LA1 = 0 or RB2Q1 = 0 and P1LA2 = 0 or RB1Q1 = 0. By Lemma 2.1,

P1LA = 0 ⇐⇒ r

[
P1

A

]
= r (A)
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⇐⇒ r

 Ik1 0
A11 A12

A21 A22

 = r

[
A11 A12

A21 A22

]

⇐⇒ k1 + r

[
A12

A22

]
= r

[
A11 A12

A21 A22

]
⇐⇒ r

[
A11

A21

]
= k1 and R

[
A11

A21

]
∩R

[
A12

A22

]
= {0} ,

RBQ1 = 0 ⇐⇒ r [B11, B21] = l1 and R [B11, B21]
T ∩R [B12, B22]

T
= {0} ,

P1LA1 = 0 ⇐⇒ r (A11) = k1 and R (A11) ∩R (A12) = {0} ,
RB2Q1 = 0 ⇐⇒ r (B21) = l1 and R (B21)

T ∩R (B22)
T
= {0} ,

P1LA2 = 0 ⇐⇒ r (A21) = k1 and R (A21) ∩R (A22) = {0} ,
RB1Q1 = 0 ⇐⇒ r (B11) = l1 and R (B11)

T ∩R (B12)
T
= {0} . □

The following result concerns the independence of submatrices in solutions
to (1.2).

Theorem 2.12. Suppose that the system (1.2) has a solution with A1 ̸= 0, A2 ̸=
0, B1 ̸= 0 and B2 ̸= 0.

(a) Consider S1, S2, S3 and S4 in (2.12) as four independent matrix sets.
Then

max
Xi∈Si

r

[
C1 − [A11, A12]

[
X1 X2

X3 X4

] [
B11

B12

]](2.23)

= min

r (A1) , r (B1) , r


0 A1G1

H1B1 0
H2B1 0
H3B1 0

, r[ 0 A1G1 A1G2 A1G3

H1B1 0 0 0

]
,

r

 0 A1G1 A1G2

H1B1 0 0
H3B1 0 0

, r
 0 A1G1 A1G3

H1B1 0 0
H2B1 0 0

} ,

max
Xi∈Si

r

[
C2 − [A21, A22]

[
X1 X2

X3 X4

] [
B21

B22

]](2.24)

= min

r (A2) , r (B2) , r


0 A2G1

H1B2 0
H2B2 0
H3B2 0

, r[ 0 A2G1 A2G2 A2G3

H1B2 0 0 0

]
,

r

 0 A2G1 A2G2

H1B2 0 0
H3B2 0 0

 , r

 0 A2G1 A2G3

H1B2 0 0
H2B2 0 0

} ,
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where

G1 = diag
[
P1LA P2LA

]
, G2 = diag

[
P1LA1

P2LA1

]
,

G3 = diag
[
P1LA2 P2LA2

]
,H1 = diag

[
RBQ1 RBQ2

]
,

H2 = diag
[
RB2Q1 RB2Q2

]
,H3 = diag

[
RB1Q1 RB1Q2

]
.

(b) The four submatrices X1, X2, X3 and X4 in (1.2) are independent, that
is, for any choice of Xi ∈ Si(i = 1, 2, 3, 4), the corresponding matrix X =[
X1 X2

X3 X4

]
is a solution of (1.2), if and only if

r

 A11 0
0 A12

A21 A22

 = r

[
A11 A12

A21 A22

]
, r

[
0 B11 B21

B12 0 B22

]
= r

[
B11 B21

B12 B22

]
,

r


B11 B21 0
0 B22 0
0 0 B21

B12 0 B22

 = 2r

[
B21

B22

]
, r (B11) + r (B12) = r

[
B11

B12

]
or

r

 A11 0
0 A12

A21 A22

 = r

[
A11 A12

A21 A22

]
, r

[
0 B11 B21

B12 0 B22

]
= r

[
B11 B21

B12 B22

]
,

r (A11) + r (A12) = r [A11, A12] , r

 A11 0 0 A12

A21 A22 0 0
0 0 A21 A22

 = 2r [A21, A22]

or

r

 A11 0
0 A12

A21 A22

 = r

[
A11 A12

A21 A22

]
, r

[
0 B11 B21

B12 0 B22

]
= r

[
B11 B21

B12 B22

]
,

r (A11) + r (A12) = r [A11, A12] , r


B11 B21 0
0 B22 0
0 0 B21

B12 0 B22

 = 2r

[
B21

B22

]
or

r

 A11 0
0 A12

A21 A22

 = r

[
A11 A12

A21 A22

]
, r

[
0 B11 B21

B12 0 B22

]
= r

[
B11 B21

B12 B22

]
,

r (B11)+r (B12) = r

[
B11

B12

]
, r

 A11 0 0 A12

A21 A22 0 0
0 0 A21 A22

 = 2r
[
A21 A22

]
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and

r

 A21 0
0 A22

A11 A12

 = r

[
A21 A22

A11 A12

]
, r

[
0 B21 B11

B22 0 B12

]
= r

[
B21 B11

B22 B12

]
,

r


B21 B11 0
0 B12 0
0 0 B11

B22 0 B12

 = 2r

[
B11

B12

]
, r (B21) + r (B22) = r

[
B21

B22

]
or

r

 A21 0
0 A22

A11 A12

 = r

[
A21 A22

A11 A12

]
, r

[
0 B21 B11

B22 0 B12

]
= r

[
B21 B11

B22 B12

]
,

r (A21) + r (A22) = r [A21, A22] , r

 A21 0 0 A22

A11 A12 0 0
0 0 A11 A12

 = 2r [A11, A12]

or

r

 A21 0
0 A22

A11 A12

 = r

[
A21 A22

A11 A12

]
, r

[
0 B21 B11

B22 0 B12

]
= r

[
B21 B11

B22 B12

]
,

r (A21) + r (A22) = r [A21, A22] , r


B21 B11 0
0 B12 0
0 0 B11

B22 0 B12

 = 2r

[
B11

B12

]
or

r

 A21 0
0 A22

A11 A12

 = r

[
A21 A22

A11 A12

]
, r

[
0 B21 B11

B22 0 B12

]
= r

[
B21 B11

B22 B12

]
,

r (B21) + r (B22) = r

[
B21

B22

]
, r

 A21 0 0 A22

A11 A12 0 0
0 0 A11 A12

 = 2r [A11, A12] .

Proof. Based on (2.15), (2.16), (2.17) and (2.18), the general expressions of
X1 −X4 in S1− S4 can independently be written as

X1 = P1X0Q1 + P1LAV11 + V21RBQ1 + P1LA1V31RB2Q1 + P1LA2V41RB1Q1,

X2 = P1X0Q2 + P1LAV12 + V22RBQ2 + P1LA1V32RB2Q2 + P1LA2V42RB1Q2,

X3 = P2X0Q1 + P2LAV13 + V23RBQ1 + P2LA1V33RB2Q1 + P2LA2V43RB1Q1,

X4 = P2X0Q2 + P1LAV14 + V24RBQ2 + P2LA1V34RB2Q2 + P2LA2V44RB1Q2,

where X0 is a particular solution of (1.1), V11 − V14, V21 − V24, V31 − V34, and
V41 − V44 are arbitrary.
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Substituting them into X yields

[
X1 X2

X3 X4

]
=

[
P1

P2

]
X0

[
Q1 Q2

]
+

[
P1LA 0
0 P2LA

] [
V11 V12

V13 V14

](2.25)

+

[
V21 V22

V23 V24

] [
RBQ1 0

0 RBQ2

]
+

[
P1LA1 0

0 P2LA1

] [
V31 V32

V33 V34

] [
RB2Q1 0

0 RB2Q2

]
+

[
P1LA2 0

0 P2LA2

] [
V41 V42

V43 V44

] [
RB1Q1 0

0 RB1Q2

]
= X0 +G1V1 + V2H1 +G2V3H2 +G3V4H3,

where

G1 = diag
[
P1LA P2LA

]
, G2 = diag

[
P1LA1 P2LA1

]
,

G3 = diag
[
P1LA2 P2LA2

]
,H1 = diag

[
RBQ1 RBQ2

]
,

H2 = diag
[
RB2Q1 RB2Q2

]
,H3 = diag

[
RB1Q1 RB1Q2

]
.

Therefore

max
Xi∈Si

r

(
C1 − [A11, A12]

[
X1 X2

X3 X4

] [
B11

B12

])
= max

G1,G2,G3,H1,H2,H3

r (A1G1V1B1+A1V2H1B1+A1G2V3H2B1+A1G3V4H3B1) ,

max
Xi∈Si

r

(
C2 − [A21, A22]

[
X1 X2

X3 X4

] [
B21

B22

])
= max

G1,G2,G3,H1,H2,H3

r (A2G1V1B2+A2V2H1B2+A2G2V3H2B2+A2G3V4H3B2) .

According to Lemma 2.6, we get (2.23) and (2.24).
On the other hand,

r (A1G1) = r [A11P1LA, A12P2LA] = r

 A11P1 A12P2

A 0
0 A

− 2r (A)

= r

 A11 0
0 A12

A21 A22

− r

[
A11 A12

A21 A22

]
,

r (H1B1) = r

[
0 B11 B21

B12 0 B22

]
− r

[
B11 B21

B12 B22

]
.

Similarly, we can simplify the other matrices in (2.23) and (2.24). The result
in Part (b) is a direct consequence of (2.23) and (2.24). □
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3. The common inner inverse of two arbitrary matrices

Suppose that

(3.1) M =

[
M1 M2

M3 M4

]
, N =

[
N1 N2

N3 N4

]
are two partitioned matrices over H, and have common inner inverse

(3.2) G =

[
G1 G2

G3 G4

]
,

where M1, N1 ∈ Hm×n, M2, N2 ∈ Hm×k, M3, N3 ∈ Hl×n, M4, N4 ∈ Hl×k,
G1 ∈ Hn×m.

Let

(3.3) Ti =

{
Gi

∣∣∣∣[ G1 G2

G3 G4

]
∈
{
M−} ∩

{
N−}} , i = 1, 2, 3, 4.

It is obvious that G is a solution to the pair of matrix equations MXM =
M,NXN = N. Thus applying Theorem 2.8 to (3.1) and (3.2), we have the
following.

Theorem 3.1. Let M,N and G be given by (3.1) and (3.2). Then

max
G1∈T1

r(G1) = min {m,n, s̃1, s̃2, s̃3, s̃4} ,

min
G1∈T1

r(G1) = t̃1 + t̃2 +m+ n+max
{
t̃3, t̃4

}
,

where

s̃1 = r



−M1 −M2 0 0 M2

−M3 −M4 0 0 M4

0 0 −N1 −N2 N2

0 0 −N3 −N4 N4

M3 M4 0 0 0
−N1 −N2 N1 N2 0
0 0 N3 N4 0


− r

[
M
N

]
− r (M)− r (N) ,

s̃2 = r


−M1 −M2 0 0 M2 −M1 0
−M3 −M4 0 0 M4 −M3 0
0 0 −N1 −N2 0 N1 N2

0 0 −N3 −N4 0 N3 N4

M3 M4 N3 N4 0 0 0


− r [M,N ]− r (M)− r (N) ,

s̃3 = r

 −M1 0 M2

−M3 0 M4

M3 M4 0

− 2r (M) ,

s̃4 = r

 −N1 0 N2

−N3 0 N4

N3 N4 0

− 2r (N) ,
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t̃1 = r



−M1 −M2 0 0 M2

−M3 −M4 0 0 M4

0 0 −N1 −N2 N2

0 0 −N3 −N4 N4

M3 M4 0 0 0
−N1 −N2 N1 N2 0
0 0 N3 N4 0


− r [M3,M4, N3, N4] ,

t̃2 = r


−M1 −M2 0 0 M2 −M1 0
−M3 −M4 0 0 M4 −M3 0
0 0 −N1 −N2 0 N1 N2

0 0 −N3 −N4 0 N3 N4

M3 M4 N3 N4 0 0 0

− r


M2

M4

N2

N4

 ,

t̃3 = −r


−M1 0 M2 −M1 0
−M3 0 M4 −M3 0
M3 M4 0 0 0
0 0 0 N1 N2

0 0 0 N3 N4



− r


−M1 0 M2 0 0
−M3 0 M4 0 0
M3 M4 0 0 0
−M1 −M2 0 N1 N2

0 0 0 N3 N4


+ r

 −M1 0 M2

−M3 0 M4

M3 M4 0

−m− n,

and

t̃4 = r

 −N1 0 N2

−N3 0 N4

N3 N4 0

− r


−N1 0 N2 −N1 0
−N3 0 N4 −N3 0
N3 N4 0 0 0
0 0 0 M1 M2

0 0 0 M3 M4



− r


−N1 0 N2 0 0
−N3 0 N4 0 0
N3 N4 0 0 0
−N1 −N2 0 M1 M2

0 0 0 M3 M4

−m− n.

Proof. It just follows from (2.19) and (2.20). □

Corollary 3.2. Let M,N and G be given by (3.1) and (3.2). Then

(a) M,N has a common inner inverse with the form G =
[

0 G2

G3 G4

]
if and

only if

t̃1 + t̃2 +m+ n+max
{
t̃3, t̃4

}
= 0.
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(b) All the common inner inverses of M,N have the form G =
[

0 G2

G3 G4

]
if

and only if

s̃1 = 0 or s̃2 = 0 or s̃3 = 0 or s̃4 = 0,

where s̃1 − s̃4 and t̃1 − t̃4 are defined as in Theorem 3.1.

Corollary 3.3. Let M,N and G be given by (3.1) and (3.2). Then

(a) M,N have a common inner inverse with the form G =
[
G1 0
G3 0

]
if and

only if

2r (M) + 2 (N) + r [N1 −M1, N2 −M2]− r [M1,M2, N1, N2]

= max

r

 −M1 −M2

N1 N2

N3 N4

+ r (M)− r (N)− n− k − l, r

 −M1 −M2

−M3 −M4

N1 N2



−r


−M1 −M2 −N1 −N2

−M3 −M4 −N3 −N4

N1 N2 0 0
0 0 M1 M2

0 0 M3 M4

− r


−M1 −M2 0 0
−M3 −M4 0 0
N1 N2 0 0
0 0 M1 M2

−N3 −N4 M3 M4

− n− k − l

 .

(b) M,N have a common inner inverse with the form G =
[
G1 G2
0 0

]
if and

only if

2r (M) + 2r (N) + r

[
N1 −M1

N3 −M3

]
− r


M1

M3

N1

N3



= max

r


M1 0 −M2

M3 0 −M4

0 N1 N2

0 N3 N4

+ r

[
−M1 N1 N2

−M3 N3 N4

]
+ k +m+ n,

r


N1 0 −N2

N3 0 −N4

0 M1 M2

0 M3 M4

+ r

[
−N1 M1 M2

−N3 M3 M4

]
+ k +m+ n

 .

(c) M,N have a common inner inverse with the form G =
[
G1 0
0 0

]
if and

only if

2r (M) + 2 (N) + r [N1 −M1, N2 −M2]− r [M1,M2, N1, N2]

= max

r

 −M1 −M2

N1 N2

N3 N4

+ r (M)− r (N)− n− k − l, r

 −M1 −M2

−M3 −M4

N1 N2


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−r


−M1 −M2 −N1 −N2

−M3 −M4 −N3 −N4

N1 N2 0 0
0 0 M1 M2

0 0 M3 M4

− r


−M1 −M2 0 0
−M3 −M4 0 0
N1 N2 0 0
0 0 M1 M2

−N3 −N4 M3 M4

− n− k − l


and

2r (M) + 2r (N) + r

[
N1 −M1

N3 −M3

]
− r


M1

M3

N1

N3



= max

r


M1 0 −M2

M3 0 −M4

0 N1 N2

0 N3 N4

+ r

[
−M1 N1 N2

−M3 N3 N4

]
+ k +m+ n,

r


N1 0 −N2

N3 0 −N4

0 M1 M2

0 M3 M4

+ r

[
−N1 M1 M2

−N3 M3 M4

]
+ k +m+ n

 .

Corollary 3.4. Let M,N and G be given by (3.1) and (3.2). Then the subma-
trix G1 in (3.2) is unique if and only if M,N satisfy the following conditions:

r


M1

M3

N1

N3

 = n,R


M1

M3

N1

N3

 ∩R


M2

M4

N2

N4

 = {0} ,

r [M1,M2, N1, N2] = m,R [M1,M2, N1, N2]
T ∩R [M2,M4, N2, N4]

T
= {0} ,

r

[
M1

M3

]
= n,R

[
M1

M3

]
∩R

[
M2

M4

]
= {0}

or

r [N1, N2] = m,R [N1, N2]
T ∩R [N2, N4]

T
= {0}

and

r

[
N1

N3

]
= n,R

[
N1

N3

]
∩R

[
N2

N4

]
= {0}

or

r [M1,M2] = m,R [M1,M2]
T ∩R [M3,M4]

T
= {0} .

Remark 3.1. Clearly, the results in [7] and [3] are the special cases of those in
this paper.
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4. Conclusion

In this paper, we have given formulas of the extreme ranks of matrices
Xi (i = 1, 2, 3, 4) in (1.2), and characterized the structure of solutions to (1.2).
We have established necessary and sufficient conditions for the uniqueness of
the submatrices Xi (i = 1, 2, 3, 4) in (1.2), and considered the independence
of submatrices in solutions to (1.2). As applications, we have presented the
maximal and minimal ranks of the submatrices of the common inner inverse
G, partitioned into 2 × 2 block form, of quaternion matrices M and N , and
described the properties of the submatrices of G. The results in [7] and [3] can
be regarded as the special cases of those in this paper.
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