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Abstract - In this paper, the performance of a new
alternative form of three-axis attitude estimation
algorithm for a rigid body is evaluated via simulation
for the situation where the observed vectors are the
estimated baselines of a GPS antenna array. This
method is derived based on a simple iterative
nonlinear least-squares with four elements of
quaternion parameter. The representation of quaternion
parameters for three-axis attitude of a rigid body is
free from singularity problem. The performance of the
proposed algorithm is compared with other eight
existing methods, such as, Transformation Method
(TM), Vector Observation Method (VOM), TRIAD
algorithm, two versions of QUaternion ESTimator
(QUEST), Singular Value Decomposition (SVD)
method, Fast Optimal Attitude Matrix (FOAM),
Slower Optimal Matrix Algorithm (SOMA).

1. Introduction

The Global Positioning System (GPS) provides us
with very precise range information such as carrier
phase measurements. By measuring differenced carrier
phase between the main antenna and the
sub-antennas, a receiver can determine the three-axis
attitude of a rigid body from the relative position
between a pair of antennas [1-3].

The problem of attitude determination is to find
the rotation matrix such as Direction-Cosine-Vector
(DCM) or a set of orientation parameters which
rotates the baseline vectors in the reference frame
into the corresponding vectors in the body frame from
a set of measurements [4]. In 1965 Wahba showed
that the problem of attitude determination is
equivalent  to finding a proper  orthogonal
transformation attitude matrix A that minimizes the
scalar weighted norm-squared residuals given by [5]
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where @i represents a scalar weighting factor for the

i-th baseline, & denotes the vector representation in
the local-level frame of the direction to some

observed objects and £ is the previously defined
vector representation of the corresponding
observations in the vehicle body frame. This Wahba's
problem is shown to be a special case of nonlinear
least-squares when the vector measurement has a
scalar weighting factor [6].

This paper compares the performance of the

quaternion—based nonlinear least-squares method with
that of other eight existing attitude determination
algorithms.

2. Quaternion-based Least-squares Method [6]

The problem of three-axis attitude determination
can be formulated as a linear least-squares problem
with norm constraint on the solution [7]. This attitude
determination problem can be solved by using simple
quaternion parameterization of the rotation matrix.

From a pair of reference-observation vectors, a
nonlinear vector measurement equation for any
baseline i can be given by

L=dr+w =h(X)+¥,  for i=12,.,n (2

where ¥ represents the vector of observation noise,
hi denotes a nonlinear vector equation for baseline i
and X denotes the vector of unknowns (9o:9::92:95)7,
The transformation matrix AT derived from these
quaternion parameters is free from the singularity
problem.

After Linearizing Eq. (2) about nominal values X’

.

and & and expanding the result to m noncolinear
baselines case, we can obtain the optimal solution by
applying a simple iterative least-squares with the
following linear error equation:

K =(HTQ'H)Y'H'Q" &L (3)

where
s=fr s - o]
H=[ H - HIT

and X is the vector of corrections to quaternion

parameters, 8l represents the residual baseline vector,
@ denotes the measurement noise covariance matrix
and H; is the matrix of partial derivatives which has
a general form as:

_on(X)
H =02 @.

The attitude matrix obtained from the unconstrained
least-squares solution in Eg. (3) is not proper
orthogonal in general Dbecause of the noisy
measurements. This problem can be overcome by
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using either a constrained least-squares solution
method with orthogonal constraint of quaternion
parameters or an ad hoc approach for dealing with
normalization constraint equation [6-8]. %

yaw= 1,231, Ditch= 11.30%, roli= 0.477

3. Simulation Results

s _

The performance of the new quaternion-based & s :\/ 7
least-squares attitude estimation algorithms were " /
evaluated by the numerical simulation. Six test cases 2
were simulated as shown in Table 1. Eight existing ™~ /
attitude determination algorithms, TM, VOM, TRIAD, .
two versions of QUEST, and three variations of igec)
QUEST were coded to compare the performance of
least-squares methods. These five  QUEST-based Figure 2. Euler angle errors of TM
algorithms are applicable to an arbitrary number of
reference-observation vector pairs and provide us with
the optimal solution and a simple analytical expression yawe 0101 pitehn D5, ol B Y
of the covariance matrix [9-13). The characteristics of
the attitude determination algorithms are summarized
in Table 1. The computational steps of implemented
algorithms and the more complete survey of other
attitude determination algorithms are summarized in
References 14 and 15, respectively.

Four versions of quaternion-based least-squares
algorithms were included in simulation. They are
Euler angle-based least-squares (ELS), quaternion
-based unconstrained least-squares (QULS),
quaternion-based constrained least-squares (QCLS)
and quaternion-based constrained least-squares with
ad hoc constraint approach (QACLS). Figure 3. Euler angle errors of VOM

Figure 1 represents the time history of true Euler
angles used in the simulation. Euler angle errors of
eight existing attitude determination algorithms in the yow= 1,231, pen= 11,305, oll= £ 477

30 0

test case 1 are shown in Figures 2 through 5. Note 1o

that the error from TRIAD is relatively large because

its accuracy depends on the choice of the first "

observation-reference vector pair; 1. e., the more 1o s

accurate solution is obtained when a set of the s, N
. . Z e —— P

observation-reference vector pair of greater accuracy \\“_ "\

is chosen as the first vector pair. The output of ELS e \\ \

in cases 5 and 6 is subject to large errors when the 20 S

yaw reaches 180 degrees because of its singularity » \“\\

problem near 0 or 180 degrees as shown in Figure 6. L . = ) " - - -

Figures 7 through 9 show the results of {Bee]

quaternion-based least-squares algorithms. They
provide accurate solution comparable to the results of
the QUEST-based algorithms in Figure 5. Relative
characteristics of quaternion-based least-squares
algorithms in terms of accuracy and computational yawe 0,081, pitch= 0.4, 1olts U 25
load are summarized in Table 3. !

08

Figure 4. Euler angle errors of TRIAD
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Figure 6. Euler angle errors of ELS

yaws 0.200, pitcn= 0,267, roile 0,408

Figure 7. Euler angle errors of QULS

vaws 0.260. pitch= 0.260. mi- 0,400

Figure 8. Euler angle errors of QCLS

yaws 0.250, pitch= 0.266. roil= 0,400

Figure 9. Euler angle errors of QACLS

Table 1. Simulation test cases

Body Frame Vector (m) : o,
Case T T @
I, ] (mm)

1 (10,0 {0.1.0] 2
2 [1.00] [0.1.0] 20
3 (1,00 [1/V2, 1/¥2,0] 2
4 (1,001 [1/VZ, 1V2,01 20
5 (BB 5B/ 2
6 (V3/V5.0/45,1/45] [/V5.V3/V5.1/45] 20

Table 2. Comparison of eight existing algorithms

Advantages

Disadvantages

« simple deterministic solution

- non-optimal solution
+ only applicable to two baselines

(three GPS antcnnas)

vom « fast computational speed « trigonometric functions used
- antenna configuration
restricted
+ simple detenninistic solution * non-optimal solution
™ v CrIISHC ¢ - at least three basclines
« fast computational speed 3
required
- non-opti ti
- simple deterministic non-optimal solution
TRIAD | fast computational speed * only to two
e (three GPS )
. ternion-based T . -
QUESTq qual erm'on o QUES (free + high computational burden
from ity )
- Gibbs tor-ba:
QUESTg - fast computational speed ibbs  vector-based - QUEST
¢ near 180 degrees)
« easy tool for theoretical :
analysis
y - hixh .
SVD - provides atlitude uncertainty " c.omputahonal burden
. . « analysis purpose
(maximum eigen value and
eigen_vector)
« robust computing without
FOAM SVD process « iterative method
- fast computational speed .
* robust i i t
SOMA robust. computing withou + low computational speed

SVD process

Table 3. Characteristics of quaternion-based least-squares methods

Accuracy Computation burden
QULS high less
QCLS highest more
QACLS highest moderate

4. Conclusions

This paper presented the performance evaluation

of a new quaternion-~based least-squares method for
three-axis attitude estimation of a rigid body with
vector measurements from GPS antenna array.
Simulation results showed that the new algorithm
provides the accuracy comparable to that of
QUEST-based methods in various test cases.
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