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In this paper, the quaternion, the dual Euler, and the direction cosine methods are numerically

compared using a non-aerodynamic 6 degree-of-freedom rigid model at all-attitude angles of

an aircraft. The dual Euler method turns out to be superior to the others in the applications

because it shows better numerical accuracy, stability, and robustness in integration step sizes.

The dual Euler method is affordably less efficient than the quaternion method in terms of

computational cost. Numerical accuracy and stability, which allow larger integration step sizes,

are more critical in modern real-time applications than computational efficiency because of

today’s increased computational power. If the quaternion method is required because of

constraints in computation time, then a suppression mechanism should be provided for algebraic
constraint errors which will eventually add computational burden.
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. Direction cosine element
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. Constant for quaternion method
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. Constraint equation to quaternion para-
meters
@, 0, ¥ . Roll angle, pitch angle, yaw angle
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Subscripts

0,1,2,3 © Index of quaternion parameters
¥ . Reversed euler angle

x,¥,2 [ Aircraft body axes

1. Introduction

Euler angles (Rolfe and Staples, 1986) and
quarternions (Cardullo, 1994 ; Robinson, 1958 ;
Hyochoong Bang, Jung-shin Lee and Youn-Ju
Eun, 2004 in Korea) have traditionally been used
for typical flight simulations and control in the
simulation community. Euler angles have their
own merits in simple mathematical expression
and physical interpretation of the parameters, but
they suffer from singularities in vertical flights.
Thus Euler angles are limited to simulation of
commercial aircrafts. In order to overcome this
singularity problem the quaternion method is ap-



A Comparison Study of Real-Time Solution to All-Attitude Angles of an Aircraft 377

plied to fighter simulations, since vertical or re-
versed flights are quite common in fighter air-
crafts. The quaternion method has its own limits
which include a more complex expression of
algebraic differential equations and difficulties in
physical interpretation of the parameters.

In the existing literature there are some other
methods (Mebius, 1995 ; Huang, 1993), for solving
all-attitude angles of an aircraft, claimed to be
superior to traditional Euler angles and qua-
ternions. The dual Euler method (Huang, 1993)
and the direction cosine method are among those.
The dual Euler method divides all-attitude angles
into two zones, and applies two alternate sets of
Euler angles to avoid singularities in relevant
zones. The core concept of the dual Euler method
is to take advantage of different sets of Euler
angles and to switch to a non-singular set when
rotational singularity points are crossed over
when using a set of Euler angles. The direction
cosine {Cardullo, 1994) method avoids the sin-
gularity problem by integrating the direction
cosine rates and solving rotational kinematics
equations resulting from orthogonality conditions
of the direction cosine matrix. The direction
cosine method is similar to the quaternion meth-
od in the sense that it is difficult to apply physical
constraints to the parameters when necessary.

In this paper three methods the quaternions, the
dual Euler, and the direction cosine methods —
are compared experimentally to identify the most
appropriate one for real-time applications. Real-
time aspects including numerical accuracy, stabil-
ity, and computational load are focused in this
study. Test simulations say that the dual Euler
method is superior to the others in accuracy and
stability. The dual Euler method and the direc-
tion cosine methods are more accurate and stable
than the quaternion method with small integra-
tion step sizes. The dual Euler method is more
robust in step sizes than the quaternion and the
direction cosine methods. The dual Euler methods
affordably less efficient than the other methods in
computational burden. However, its additional
computational cost can be considered acceptable
considering the overall amount of simulation
codes in modern applications and the recent

growth in computation capability. If the qua-
ternion method is required because of constraints
in computation time, then a suppression mechan-
ism should be provided for algebraic constraint
errors which will eventually add computational
burden.

2. Numerical Solutions
to All-Attitude Angles

In this comparison the traditional Euler meth-
od was excluded because it comprises intrinsic
singularity and cannot be applicable to all-atti-
tude angles. Three numerical solutions available
in the literature are introduced : the quaternion,
the dual Euler, and the direction cosine methods.
Their natures are briefly explained here.

2.1 The quaternion method

Coordinate transformation from aircrafts’ rota-
ting body axes (xo, Vo, ) to fixed inertial axes
(x, ¥, z) is represented by Eq. (1), when qua-
ternions (e, €1, €, @) are adopted rather than
Euler angles.

1] [d+e-ei—e 2eataen) 2Heae—eae) [0
y|= Uae—ae) d—e+d—d 2aetee) ||n| (1)

2l L Haateae 2ae—ee) d-d—dtellz

Here quaternions are governed by the equations
as follows :

o= —%(elP—kezQ—l-esR) + kAo

é1:%<eop+ ezR_€3Q> ‘f‘k/iel
| (2)
é2:“2—(€oQ+€3P_€1R) +kﬁ€z

észé(eoR‘f'&Q—ezP) +/€/1€3

where P, @, and R are roll, pitch, and yaw rate
respectively. Integration step size, /1, must satisfy
the condition of 2#<1, for the simulation not
to diverge. £ is a constant, and determined experi-
mentally for an appropriate simulation result to
be achieved.

A constraint equation applies to quaternion
parameters :
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A=1—(e§+el+ e+ ed) (3)

Thus the quaternion approach comprises 4 Ist-
order differential kinematic equations and ! alge-
braic constraint equation for the problem of 3
degrees of rotational freedom.

2.2 The direction cosine method

The direction cosine matrix defines the trans-
formation between inertial and body axes. Each
direction cosine represents the projection of a unit
vector in one axis system onto a unit vector in the
other axis system. The direction cosine method
takes advantage of the relation :

0 R —@Q
la;]1=|—R 0 P |las] (4)
Q —P 0

The 9 Direction cosine rates [&.;] in Eq. (4) are
integrated, and obey the orthogonality conditions
leading to the following constraint equations :

A1~ Q22033 A23032

Q217 Q130327 Q12033

Q31— Q12023 Q13022

Q12— aA23031— 41433

A22=a1ds33— Q13431 (5)

a3= Q13421 — A1 a2

A13== Q21032 A22d3

A23= A12A31 — Q11432

a33= a1 a2~ A12d21
These equations result in the states of direction
cosines at the present integration step, and the
state values are used for integration of Eq. (4) at
the next step. That is, the singularity problem is

resolved by integrating 9 linear differential equa-
tions for rotational kinematics rather than 3.

2.3 The dual Euler method

The dual Euler method applies two different
sets of Euler angles to avoid singularities by
switching from one to the other. Two sets, ordi-
nary and reversed, are related by Eq. (6) for the
direction cosine.

A:[@]x[@]y[ q;]z

=[®r]y[¢r]x[wr]z (6)

An ordinary set of Euler equations shown in Eq.
(7) are integrated until 8 comes close to vertical
points, =1 7x/2.

¢=P+sin @
=@ cos p— R sin ¢ (7
¥=(Qsin ¢+ R cos ¢)/cos 8

where @, 6, and ¥ are roll, pitch, and yaw angle
respectively.

In the vicinity of the singular points the set of
Euler equations switches to a different set of
reversed Euler equations defined in Eq. (8).

¢r=P cos 6.+ R sin 6,
6,=Q—1,sin ¢, (8
$»=(—Psin 6+ R cos 6;) /cos ¢~

Here ¢, ¥r, and 8, are reversed roll, yaw, and
pitch angle respectively. As can be seen, this set
also has singularities at ¢,=17/2. When the
singular points of ¢, come closer during numeri-
cal simulation, the ordinary set of Euler equations
is recovered. Here cos ¢,=0 is equivalent to §=
0 by the relationship in Eq. (6). The switch-over
criteria are typically recommended to be 8=+ 7/

4, §==+371/4.
3. Numerical Tests

The goal of numerical tests is to identify which
algorithm among the quaternion, the dual Euler,
and the direction cosine methods is the most
appropriate in areal-time environment. The cri-
teria are accuracy, stability, computational load,
and robustness in integration step sizes. The three
methods are applied to a nonraerodynamic 6
DOF rigid-body model (Huang, 1993), and com-
pared under various conditions such as different
integration algorithms and step sizes. Non-aero-
dynamic means that the 6 DOF rigid body is
driven by Eq. (9), not by aerodynamics and other
forces.

P /4 sin xt
Q= 7T (9)
R —P

Since it is impossible to obtain an analytic solu-
tion to the problem, a Runge-Kutta 4th-order



A Comparison Study of Real-Time Solution to All-Attitude Angles of an Aircraft 379

integration is used to yield a solution assumed to
be exact. Errors in rotational state variables are
monitored in the paper only when an Adams-
Bashforth 2nd-order integration is applied with
step sizes £=0.05 sec and 0.01 sec. However, it is
observed that other integration methods result in
similar trends.

It is not a trivial task to determine the appro-
priate value of % in the quaternion method. In the
tests shown here £=10.0 is selected for best per-
formance after scores of test runs. Fig. 1 through
Fig. 3 show errors of three methods in the rota-
tional variables when 2=0.01 sec is adopted. As
can be seen in the plots, both the dual Euler and
the direction cosine method are acceptably accu-
rate, and stable compared with the quaternion
method. The quaternion method has a problem
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Fig. 2 Comparison of numerical errors in yaw
angle ¥ (A=0.01, AB-2)

with algebraic-differential equations, and the di-
vergence of numerical errors can be expected. Fig.
4 through Fig. 6 are regarding a larger step size,
£=0.05 sec. The plots show that the dual Euler
method is more robust in step sizes than the
direction cosine method. The direction cosine
method yields unacceptable errors in pitch angle
around #=6.0 sec, which is equivalent to §=—
7/2. The direction cosine method fails to com-
pute the value of & by the relation :

O=sin"*{—aa) (10)

Because of truncation errors, the absolute value
of the argument in Eq. (10) at the time becomes
larger than 1 when AB-2 and #=1 are combined.
But RK-4 does not violate the limit even when
$=0.05 is used. The integration tool, MATLAB,
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Fig. 4 Comparison of numerical errors in pitch
angle ¢ (A=0.05, AB-2)



380 Sung-Sik Shin, Jung-Hoon Lee and Sug-Joon Yoon

04 T T T T

o3 Dual Euler
.. Direction Cosine | i
62| Z
g o' R
% SN T ¥
z w ;
Y T
:l‘l
2 oah i
0.2 - i
03} ' -
0.4 . . . :
o 2 a [ 8 10
time [sec]
Fig. 5 Comparison of numerical errors in yaw
angle ¢y (h=0.05, AB-2)
7 T T T
02 N 4
01 N £y ]
i
.y - e e
0.0 f—onr TN N AR i I i
3 . ) ; L
= j !
L ot 4 I-
3 i
= {
R
a
LY i
e Dual Euler !
oal Direction Cosine | |
05| 4
4 3 k. i1
o 2 3 6 8 10

time {sec]
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automatically assigns O if it fails to compute
sin™!. That is why we have unacceptable errors
around f=6sec. If the simualtion lasts for a
longer time or if larger step sizes are used, which
means larger truncation errors, then the direction
cosine method inevitably reveals similar failures
more often.

The dual Euler and the direction cosine methods
are more accurate and stable than quaternions
with small integration step sizes. The dual Euler
method is more robust in step sizes than the
quaternion and the direction cosine methods. The
reason is that among the three methods only the
dual Euler method is free from algebraic con-
straint equations. The constraints are constantly
disturbed by truncation errors during integra-
tions, and there is no mechanism applied in the

. Table 1 Relative time consumptions of solutions to
all-attitude angles (%=0.01 sec)

. Directi
Quaternion | Dual Euler 1recA ton
Cosine
AB-2 1 1.22 1.11
RK-4 1.82 2.55 2.03

original methods to suppress the divergence of
errors.

Computational burdens of the three methods
are compared in Table 1. AB-2 and RK-4 are
combined with a step size, #=0.01 sec in the
comparison. Relative time consumptions of the
others to the quaternion method’s are presented in
the table. The result shows that the dual Euler
method is the least efficient among the three, but
the differences are negligible considering today’s
rich computational power and additional com-
putational load to integration of state variables in
whole flight simulation.

Some additional test runs are performed to
identify at what pitch angles switch-overs of
Euler angles should be made for the best result in
the dual Euler method. As mentioned earlier in
this paper, recommended switch-over pitch angles
are 0==1x/4, 0==13x/4. The test simulations
show that the values of switch-over angles do not
significantly effect the accuracy of simulations, if
the angles are not close enough to the singular
points.

4. Conclusions

The dual Euler method is affordably less effi-
cient than the other methods in computational
burden. However, its additional computational
cost can be considered acceptable considering the
overall amount of simulation codes in modern
applications and the recent growth in computa-
tion capability.

In conclusion, the dual Euler method is superi-
or to the other methods in accuracy, stability, and
robustness in integration step sizes. If the qua-
ternion method is required because of constraints
in computation time, then a suppression mechan-
ism should be provided for algebraic constraint
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errors which will eventually add computational
burden. The same logic applies to the direction
cosine method.
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