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DETERMINANTAL EXPRESSION OF THE GENERAL

SOLUTION TO A RESTRICTED SYSTEM OF QUATERNION

MATRIX EQUATIONS WITH APPLICATIONS

Guang-Jing Song

Abstract. In this paper, we mainly consider the determinantal repre-
sentations of the unique solution and the general solution to the restricted

system of quaternion matrix equations{
A1X = C1

XB2 = C2,
Rr (X) ⊆ T1, Nr (X) ⊇ S1,

respectively. As an application, we show the determinantal representa-

tions of the general solution to the restricted quaternion matrix equation

AX +Y B = E, Rr (X) ⊆ T1, Nr (X) ⊇ S1, Rl (Y ) ⊆ T2, Nl (Y ) ⊇ S2.

The findings of this paper extend some known results in the literature.

1. Introduction

Throughout, we denote the real number field by R, the set of all m × n
matrices over the quaternion algebra

H = {a0 + a1i+ a2j + a3k | i2 = j2 = k2 = ijk = −1, a0, a1, a2, a3 ∈ R}
by Hm×n, the identity matrix with the appropriate size by I. For A ∈ Hm×n,
the symbols A∗ stands for the conjugate transpose of A. The Moore-Penrose
inverse of A, denoted by A†, is the unique matrix X ∈ Hn×m satisfying the
Penrose equations

(1) AXA = A, (2) XAX = X, (3) (AX)∗ = AX, (4) (XA)∗ = XA.

Further, PA = A†A, QA = AA†, RA = Im − AA† and LA = In − A†A stand
for some orthogonal projectors induced from A.

The quaternions were first explored by the Irish mathematician Sir William
Rowan Hamilton in [15]. Quaternions have massive applications in diverse
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areas of mathematics like computation, geometry and algebra (see, e.g. [10,
31, 36]). Nowadays quaternion matrices play a remarkable role in control the-
ory, mechanics, altitude control, quantum physics and signal processing (see,
e.g. [1,16–18,28]). As a crucial technology for color image copyright protection,
watermarking technology has been extensively researched and used. For the
color image watermarking technology, quaternions forming the Cayley-Dickson
algebra of order 4 have a structure suitable to apply in color image. Sangwine
et al. [34, 35] interpreted the imaginary part of a quaternion in terms of three
components of a color image: R (red), G (green) and B (blue) which means
that all color components of the image are treated together, as opposed to
processing each of the three components independently. That is why quater-
nions have found numerous applications in the field of color image processing.
Moreover, when consider some engineering problems, we need to solve many
different kinds of equations or linear systems (see, e.g. [3,25–27,29]). Constant
coefficient quaternion differential equations [14] which can be transformed into
linear quaternion matrix equations, play an important role in developing at-
titude propagation algorithms for inertial navigation or attitude estimation
onboard spacecraft. Thus it is interesting and important to study the solution
of linear quaternion matrix equations. (see, e.g. [32, 47]).

In 1970, Steve Robinson [33] gave an elegant proof of Cramer’s rule over
the complex number field. After that, using Cramer’s rules to represent the
generalized inverses and different solutions of some restricted equations have
been studied by many authors (see, e.g. [4, 5, 8, 41–44, 46]). In Chapter 3 of
[44], Wang, Wei and Qiao surveyed the results on the Cramer’s rules over
complex field. Known from their work, Cramer’s rule is only used as a basic
method to express the unique solution to some consistent matrix equation or
the best approximate solution to some inconsistent matrix equation. To our
best knowledge, there has been little research on expressing the general solution
of the restricted system of matrix equations

(1)

{
A1X = C1

XB2 = C2,
Rr (X) ⊆ T1, Nr (X) ⊇ S1

and the restricted matrix equation

(2) AX + Y B = E, Rr (X) ⊆ T1, Nr (X) ⊇ S1, Rl (Y ) ⊆ T2, Nl (Y ) ⊇ S2

by Cramer’s rules.
Unlike multiplication of real or complex numbers, multiplication of quater-

nions is not commutative. Many authors (see, e.g. [2,6,7,9,11–13]) had tried to
give the definitions of the determinant of a quaternion matrix. Unfortunately,
by their definitions it is impossible for us to give a determinantal representa-
tion of an inverse of matrix. In 2008, Kyrchei [19] defined the row and column
determinants of a square matrix over the quaternion skew field, and derived
the Cramer’s rule for some quaternionic system of linear equations. Some other
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results relate to the row and column determinant of quaternion matrix with
applications can be founded in [20–24,37–40].

Motivated by the work mentioned above, and keep the interesting of the
row and column determinant theory of quaternion matrix, we in this paper
aim to consider a series of determinantal expressions for the general solutions
to the restricted system (1) and matrix equation (2), respectively. The paper
is organized as follows. In Section 2, when (1) is consistent, we derive some
determinantal representations for its unique solution and general solution, re-
spectively. In Section 3, we derive the determinantal representation for the
general solution of (2). To conclude this paper, in Section 4 we propose some
further research topics.

2. Determinantal expressions for the unique solution and the
general solution to (1)

In this section, we will consider the determinantal expressions for the unique
solution and the general solution to the restricted system of matrix equations
(1), respectively. We begin this section with the following results. Suppose Sn
is the symmetric group on the set In = {1, . . . , n} .

Definition 2.1 (Definitions 2.4-2.5 [19]). (1) The ith row determinant of A =
(aij) ∈ Hn×n is defined by

rdetiA =
∑
σ∈Sn

(−1)
n−r

aiik1
aik1

ik1+1
· · · aik1+l1

i · · · aikr ikr+1
· · · aikr+lr ikr

for all i = 1, . . . , n. The elements of the permutation σ are indices of each
monomial. The left-ordered cycle notation of the permutation σ is written as
follows:

σ = (iik1ik1+1 · · · ik1+l1) (ik2ik2+1 · · · ik2+l2) · · · (ikr ikr+1 · · · ikr+lr ) .

The index i opens the first cycle from the left and other cycles satisfy the
following conditions, ik2 < ik3 < · · · < ikr and ikt < ikt+s for all t = 2, . . . , r
and s = 1, . . . , lt.

(2) The jth column determinant of A = (aij) ∈ Hn×n is defined by

cdetj A =
∑
τ∈Sn

(−1)
n−r

ajkr jkr+lr
· · · ajkr+1jkr

· · · ajjk1+l1
· · · ajk1+1jk1

ajk1
j

for all j = 1, . . . , n. The elements of the permutation τ are indices of each
monomial. The right-ordered cycle notation of the permutation τ is written as
follows:

τ = (jkr+lr · · · jkr+1jkr ) (jk2+l2 · · · jk2+1jk2) · · · (jk1+l1 · · · jk1+1jk1j) .

The index j opens the first cycle from the right and other cycles satisfy the
following conditions, jk2 < jk3 < · · · < jkr and jkt < jkt+s for all t = 2, . . . , r
and s = 1, . . . , lt.
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Suppose that A.j(b) denotes the matrix obtained from A by replacing its jth
column with the column b, and Ai.(b) denotes the matrix obtained form A by
replacing its ith row with the row b.

Lemma 2.1 ([20]). Suppose that A,B,C ∈ Hn×n are given, and X ∈ Hn×n is
unknown. If det (A∗A) 6= 0 and det (BB∗) 6= 0, then AXB = C has a unique
solution, which can be written as

xij =
rdetj (BB∗)j.

(
cAi.
)

det (A∗A) det (BB∗)
or xij =

cdetj (A∗A).i
(
cB.j
)

det (A∗A) det (BB∗)
,

where
cAi. :=

[
cdeti (A∗A).i (d.1) , . . . , cdeti (A∗A).i (d.n)

]
cB.j :=

[
rdetj (BB∗)j. (d1.) , . . . , rdetj (BB∗)j. (dn.)

]T
with di., d.j are the ith row vector and jth column vector of A∗CB∗, respectively,
for all i, j = 1, . . . , n.

The following lemma is given by Mitra [30], which can be generalized into
the quaternion skew filed.

Lemma 2.2. (1) Let A ∈ Hm×n, B ∈ Hp×q, C ∈ Hm×q be known and X ∈
Hn×p be unknown. Then the matrix equation AXB = C is consistent if and
only if AA†CB†B = C. In this case, its general solution can be expressed as

X = A†CB† + LAU + V RB = A†CB† + Z −A†AZBB†,
where U, V and Z are arbitrary matrices over H with appropriate dimensions.

(2) Let Ai ∈ Hmi×n, Bi ∈ Hp×qi , Ci ∈ Hmi×qi , i = 1, 2 be known and
X ∈ Hn×p be unknown. Denote A∗1A1 + A∗2A2 = T , B1B

∗
1 + B2B

∗
2 = S, then

a necessary and sufficient condition for the consistent equations A1XB1 =
C1, A2XB2 = C2 to have a common solution is

A∗1A1T
†A∗2C2B

∗
2S
†B1B

∗
1 = A∗2A2T

†A∗1C1B
∗
1S
†B2B

∗
2 .

Then we can show the main results of this section.

Theorem 2.3. Suppose that A1 ∈ Hm×n, B2 ∈ Hp×q, C1 ∈ Hm×p, C2 ∈ Hn×q,
T1 ⊂ Hn and S1 ⊂ Hp are known. Then we can get the following results.

(a) (1) is consistent if and only if

(3)
Rr (C1) ⊆ A1T1, Nr (C1) ⊇ S1, Rr (C2) ⊆ T1, Nr (C2) ⊇ S1B2 and

A1C2 = C1B2.

In this case, the general solution of (1) can be written as

(4) X = X0 + PT1∩Nr(A1)W1PS⊥1 ∩Nr(B∗2),

where

X0 = (A1PT1
)
†
C1PS⊥1 + PT1∩Nr(A1)

(
C2 − (A1PT1

)
†
C1PS⊥1 B2

)(
PS⊥1 B2

)†
,

and W1 is an arbitrary matrix with proper size.
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(b) If the equalities in (3) are all satisfied and T1 ∩ Nr (A1) = 0 or S⊥1 ∩
Nr (B∗2) = 0, then the solution of (1) is unique. Let E∗1 , F1 be two full column
rank matrices such that T1 = Nr (E1) , S1 = Rr (F1) . Then the unique solution

of (1) can be expressed as X = (xij) = (A1PT1
)
†
C1PS⊥1 , which possess the

determinantal representations:

(5)

xij =
rdetj (B2B

∗
2 + F1F

∗
1 )j.

(
cAi.
)

det (A∗1A1 + E∗1E1) det (B2B∗2 + F1F ∗1 )
or

xij =
cdetj (A∗1A1 + E∗1E1).i

(
cB.j
)

det (A∗1A1 + E∗1E1) det (B2B∗2 + F1F ∗1 )
,

where

cAi. :=
[

cdeti (A∗1A1 + E∗1E1).i (d.1) , . . . , cdeti (A∗1A1 + E∗1E1).i (d.n)
]

cB.j :=
[

rdetj (B2B
∗
2 + F1F

∗
1 )j. (d1.) , . . . , rdetj (B2B

∗
2 + F1F

∗
1 )j. (dn.)

]T
with di., d.j are the ith row vector and jth column vector of A∗1C1B2B

∗
2 , respec-

tively, for all i = 1, . . . , n, j = 1, . . . , p.
(c) If the equalities in (3) are all satisfied, T1 ∩ Nr (A1) 6= 0 and S⊥1 ∩

Nr (B∗2) 6= 0, then the solution of (1) is not unique. Suppose that E∗2 ,K
∗
2 , F2, L2

are full column rank matrices such that

T1 = Nr (E2) , T1 ∩Nr (A1) = Rr (K∗2 ) ,

S⊥1 = Nr (F ∗2 ) , S⊥1 ∩Nr (B∗2) = Rr (L2) .

In this case, X = (xij) ∈ Hn×p possess the determinantal representations,

(6) xij =
rdetj (B2B

∗
2 + F2F

∗
2 + L2L

∗
2)j.

(
cAi.
)

det (A∗1A1 + E∗2E2 +K∗2K2) det (B2B∗2 + F2F ∗2 + L2L∗2)
,

or

(7) xij =
cdetj (A∗1A1 + E∗2E2 +K∗2K2).i

(
cB.j
)

det (A∗1A1 + E∗2E2 +K∗2K2) det (B2B∗2 + F2F ∗2 + L2L∗2)
,

where

cAi. :=
[
cdet
i

(A∗1A1 + E∗2E2 +K∗2K2).i (d.1) , . . . , cdet
i

(A∗1A1 + E∗2E2 +K∗2K2).i (d.n)
]

cB.j :=

[
rdet
j

(B2B
∗
2 + F2F

∗
2 + L2L

∗
2)j. (d1.) , . . . , rdet

j
(B2B

∗
2 + F2F

∗
2 + L2L

∗
2)j. (dn.)

]T
with di., d.j are the ith row vector and jth column vector of

A∗1C1B2B
∗
2 +A∗1C1L2L

∗
2 +K∗2K2C2B

∗
2 +K∗2K2X0L2L

∗
2 +K∗2K2LA1PT1

W2RP
S⊥1

B2L2L
∗
2,

respectively, for all i = 1, . . . , n, j = 1, . . . , p and W2 is arbitrary.
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Proof. (a) It is easy to prove that if the restricted system (1) is consistent, then
the equalities in (3) are all satisfied. For the other direction, note that

Rr (X) ⊆ T1, Nr (X) ⊇ S1 ⇔ X = PT1WPS⊥1 ,

where W is an arbitrary matrix with proper size. Then the restricted system
(1) is consistent if and only if the following system of matrix equations

(8)

{
A1PT1

WPS⊥1 = C1,

PT1
WPS⊥1 B2 = C2,

is consistent relate to W. By Rr (C1) ⊆ A1T1, Nr (C1) ⊇ S1, Rr (C2) ⊆ T1 and
Nr (C2) ⊇ S1B2, we can get the two equations in (8) are consistent, respectively.
Moreover, by Lemma 2.2(2) and note that A1C2 = C1B2, then

PT1
A∗1A1PT1

(PT1
(A∗1A1+I)PT1

)
†
PT1

C2B
∗
2PS⊥1

(
PS⊥1 (I+B2B

∗
2)PS⊥1

)†
PS⊥1

= PT1
(PT1

(A∗1A1+I)PT1
)
†
PT1

A∗1A1PT1
C2B

∗
2PS⊥1

(
PS⊥1 (I+B2B

∗
2)PS⊥1

)†
PS⊥1

= PT1
(PT1

(A∗1A1+I)PT1
)
†
PT1

A∗1C1PS⊥1 B1B
∗
1PS⊥1

(
PS⊥1 (I+B2B

∗
2)PS⊥1

)†
PS⊥1

= PT1
(PT1

(A∗1A1+I)PT1
)
†
PT1

A∗1C1PS⊥1

(
PS⊥1 (I+B2B

∗
2)PS⊥1

)†
PS⊥1 B1B

∗
1PS⊥1 ,

which is saying that the system (8) is consistent. By Lemma 2.2(1), the general
solution of the first equation in (8) can be expressed

W = (A1PT1
)
†
C1PS⊥1 + LA1PT1

V1 + V2RP
S⊥1
,

where V1 and V2 are arbitrary matrices with proper sizes. After taking it into
the second equation in (8), we can get

PT1
LA1PT1

V1PS⊥1 B2 = C2 − PT1
(A1PT1

)
†
C1PS⊥1 B2.

Moreover, V1 can be expressed as

V1 =
(
PT1

LA1PT1

)† (
C2 − PT1

(A1PT1
)
†
C1PS⊥1 B2

)(
PS⊥1 B2

)†
+ LPT1

LA1PT1
W1 +W2RP

S⊥1
B2
,

where W1 and W2 are arbitrary. In this case, the general solution of (8) can
be expressed as

W = W0 + LA1PT1
W1RP

S⊥1
B2 + LA1PT1

LPT1
LA1PT1

W2 + V2RP
S⊥1
,

with

W0 = (A1PT1
)
†
C1PS⊥1

+ LA1PT1

(
PT1

LA1PT1

)† (
C2 − (A1PT1

)
†
C1PS⊥1 B2

)(
PS⊥1 B2

)†
.

Note that

PT1
LA1PT1

= PT1
− PT1

(A1PT1
)
†
A1PT1

= PT1∩Nr(A1),
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RP
S⊥1

B2PS⊥1 = PS⊥1 − PS⊥1 B2

(
PS⊥1 B2

)†
PS⊥1 = PS⊥1 ∩Nr(B∗2),

then the general solution of (1) can be expressed as

X = PT1
WPS⊥1

= PT1

(
W0 + LA1PT1

LPT1
LA1PT1

W2 + LA1PT1
W1RP

S⊥1
B2

+ V2RP
S⊥1

)
PS⊥1

= PT1
W0PS⊥1 + PT1∩Nr(A1)W1PS⊥1 ∩Nr(B∗2),

where W1 is an arbitrary matrix with proper size.
(b) If T1 ∩ Nr (A1) = 0 or S⊥1 ∩ Nr (B∗2) = 0, then PT1∩Nr(A1) = 0 or

PS⊥1 ∩Nr(B∗2) = 0. It follows that the solution of (1) is unique. In order to prove

the determinantal expression of the unique solution of (1), we need to show
that: (1) has the same solutions with the following restricted equation

(9) A∗1A1X = A∗1C1, XB2B
∗
2 = C2B

∗
2 ,Rr (X) ⊆ T1, Nr (X) ⊇ S1.

Firstly, it is easy to show that all the solutions of (1) satisfy (9). For the other
direction, suppose that X0 is an arbitrary solution of (9), then

A∗1A1X0 = A∗1C1, X0B2B
∗
2 = C2B

∗
2 .

On account of

Rr (C1) ⊆ Rr (A1PT1) , Nr (C2) ⊇ Nr
(
PS⊥1 B2

)
,

then there exist two matrices W1 and W2 such that

A∗1A1X0 = A∗1A1PT1
W1, X0B2B

∗
2 = W2CP

S⊥1
B2
B∗2 .

By the reducing rules, we have

A1X0 = A1PT1
W1 = C1, C2 = X0B2 = W2CP

S⊥1
B2
,

which is equivalent that X0 satisfied (1). Next, we will show the determinantal
expression of the unique solution of (1). Denote T1 = Nr (E1) , S1 = Rr (F1) ,
then

Rr (X) ⊆ T1 ⇔ E1X = 0, Nr (X) ⊇ S1 ⇔ XF1 = 0.

In this case, (9) can be rewritten as[
A∗1A1 E∗1
E1 0

] [
X 0
0 0

] [
B2B

∗
2 F1

F ∗1 0

]
=

[
A∗1C1B2B

∗
2 0

0 0

]
.

Multiply
[
I E∗1

]
and

[
I
F ∗1

]
from the two sides gives

(A∗1A1 + E∗1E1)X (B2B
∗
2 + F1F

∗
1 ) = A∗1C1B2B

∗
2 .

Note that A∗1A1 +E∗1E1 and B2B
∗
2 +F1F

∗
1 are nonsingular, then by Lemma 2.1

the determinantal expressions of the unique solution of (1) can be expressed as
(5).
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(c) If T1 ∩ Nr (A1) 6= 0 and S⊥1 ∩ Nr (B∗2) 6= 0, the solution of (1) is not
unique which can be expressed as (4). Next we will show the determinantal
expression of the general solution to (1). Suppose that E∗2 ,K

∗
2 , F2, L2 are full

column rank matrices such that

T1 = Nr (E2) , T1 ∩Nr (A1) = Rr (K∗2 ) ,

S⊥1 = Nr (F ∗2 ) , S⊥1 ∩Nr (B∗2) = Rr (L2) .

Denote

T11 = Nr
(
E2

K2

)
and S11 = Nr

(
F ∗2
L∗2

)
,

then it is easy to prove

(E∗2E2 +K∗2K2)PT11
= 0, PS⊥11 (F2F

∗
2 + L2L

∗
2) = 0,

K2PT1
= K2, PS⊥1 L2 = L2, E2PT1

= 0, PS⊥1 F2 = 0.

By the results in (a), the general solution of (1) can be expressed as (4). It can
be verified that

(A∗1A1 + E∗2E2 +K∗2K2)
(
PT1

W0PS⊥1 + PT1
LA1PT1

W1RP
S⊥1

B2
PS⊥1

)
(B2B

∗
2 + F2F

∗
2 + L2L

∗
2)

= A∗1A1PT1
W0PS⊥1 B2B

∗
2 +A∗1A1PT1

W0PS⊥1 L2L
∗
2 +K∗2K2PT1

W0PS⊥1 B2B
∗
2

+K∗2K2PT1
W0PS⊥1 L2L

∗
2 +K∗2K2PT1

LA1PT1
W1RP

S⊥1
B2
PS⊥1 L2L

∗
2

= A∗1C1B2B
∗
2 +A∗1C1L2L

∗
2 +K∗2K2C2B

∗
2 +K∗2K2PT1

W0PS⊥1 L2L
∗
2

+K∗2K2LA1PT1
W1RP

S⊥1
B2
L2L

∗
2

= A∗1C1B2B
∗
2 +A∗1C1L2L

∗
2 +K∗2K2C2B

∗
2 +W,

where

W = K∗2K2PT1
W0PS⊥1 L2L

∗
2 +K∗2K2LA1PT1

W1RP
S⊥1

B2
L2L

∗
2.

Note that

T11 ∩Nr (A1) = 0 and S11 ∩Nr (B∗2) = 0,

thus A∗1A1 +E∗2E2 +K∗2K2 and B2B
∗
2 +F2F

∗
2 +L2L

∗
2 are nonsingular, and X

can be written as

X = (A∗1A1+E∗2E2+K∗2K2)
−1

(A∗1C1B2B
∗
2 +A∗1C1L2L

∗
2+K∗2K2C2B

∗
2 +W )

(B2B
∗
2 +F2F

∗
2 +L2L

∗
2)
−1
.

By Lemma 2.1 the general solution of (1) can be expressed as (6)-(7). �

As applications, we can get the following results.

Corollary 2.4. Suppose that A1 ∈ Hm×n, B2 ∈ Hp×q, C1 ∈ Hm×p and C2 ∈
Hn×q are given such that the system of matrix equations

(10) A1X = C1, XB2 = C2
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is consistent. Let E∗ and F be two full column rank matrices such that
Nr (A1) = Rr (E∗) and Nr (B∗2) = Rr (F ) . In this case, the general solution
of (10) possess the following determinantal representations:

(11)

xij =
rdetj (B2B

∗
2 + FF ∗)j.

(
cAi.
)

det (A∗1A1 + E∗E) det (B2B∗2 + FF ∗)
or

xij =
cdetj (A∗1A1 + E∗E).i

(
cB.j
)

det (A∗1A1 + E∗E) det (B2B∗2 + FF ∗)
,

where

cAi. :=
[

cdeti (A∗1A1 + E∗E).i (d.1) , . . . , cdeti (A∗1A1 + E∗E).i (d.n)
]
,

cB.j :=
[

rdetj (B2B
∗
2 + FF ∗)j. (d1.) , . . . , rdetj (B2B

∗
2 + FF ∗)j. (dn.)

]T
,

with di., d.j are the ith row vector and jth column vector of

A∗1C1 (B2B
∗
2 + FF ∗) + E∗EC2B

∗
2 + E∗ELA1

V RB2
FF ∗,

respectively, for all i = 1, . . . , n, j = 1, . . . , p, with an arbitrary matrix V ∈
Hn×p.

Proof. Similarly, we can choose two full column rank matrices E∗ and F such
that Nr (A1) = Rr (E∗) and Nr (B∗) = Rr (F ) . Suppose that X is an arbitrary
solution to (10), then we can prove

(A∗1A1 + E∗E)X (B2B
∗
2 + FF ∗)

= A∗1C1B2B
∗
2 +A∗1C1FF

∗ + E∗EC2B
∗
2 + E∗ELA1

V RB2
FF ∗,

where V is an arbitrary matrix with proper size. Note that A∗1A1 + E∗E and
B2B

∗
2 +FF ∗ are nonsingular, then by Lemma 2.1, the general solution to (10)

can be expressed as (11). �

Corollary 2.5. Suppose that A ∈ Hm×n and C ∈ Hm×n are given such that
AX = C has a Hermitian solution. Let E∗ be a full column rank matrix such
that Nr (A) = Rr (E∗) . In this case, its Hermitian solution can be expressed
as X = 1

2 (X1 +X∗1 ) where X1 = (xij) possess the following determinantal
representations

xij =
rdetj (A∗A+ E∗E)j.

(
cAi.
)

det (A∗A+ E∗E)
2 or xij =

cdetj (A∗A+ E∗E).i
(
cB.j
)

det (A∗A+ E∗E)
2 ,

where

cAi. :=
[

cdeti (A∗A+ E∗E).i (d.1) , . . . , cdeti (A∗A+ E∗E).i (d.n)
]
,

cB.j :=
[

rdetj (A∗A+ E∗E)j. (d1.) , . . . , rdetj (A∗A+ E∗E)j. (dn.)
]T
,

with di., d.j are the ith row vector and jth column vector

A∗C (A∗A+ E∗E) + E∗EC∗A+ E∗ELAV LAE
∗E

for all i, j = 1, . . . , n, with an arbitrary matrix V ∈ Hn×n.
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Corollary 2.6. Suppose that A ∈ Hm×n, C ∈ Hm×q, T1 ⊂ Hn and S1 ⊂ Hq.
Denote T11 = Rr (PT1

A∗), then the restricted quaternion matrix equation

AX = C, Rr (X) ⊆ T1, Nr (X) ⊇ S1

is consistent if and only if Rr (C) ⊆ AT1 and Nr (C) ⊇ S1. In this case, the
general solution can be expressed as

X = (APT1)
†
CPS⊥1 + PT1LAPT1

U1PS⊥1 + PT1V1PS⊥1

= (APT1
)
†
CPS⊥1 + PT1

Z1PS⊥1 − PT11
Z1PS⊥1

= (APT1
)
†
CPS⊥1 + PT1∩Nr(A)U1PS⊥1 + PT1

V1PS⊥1 ,

where U1, V1 and Z1 are arbitrary matrices with proper sizes. Suppose that
E∗1 ,K

∗
1 are full column rank matrices such that

T1 = Nr (E1) , T1 ∩Nr (A) = Rr (K∗1 ) .

Then the general solution X = (xij) posses the determinantal representation:

xij =
cdeti (A∗A+ E∗1E1 +K∗1K1).i (d.j)

det (A∗A+ E∗1E1 +K∗1K1)
,

with d.j is the jth column vector of A∗C + K∗1K1Z for all i = 1, . . . , n, j =
1, . . . , q, and Z is an arbitrary matrix over H with appropriate dimension.

Corollary 2.7. Suppose that B ∈ Hn×q, C ∈ Hm×q, T2 ⊂ H1×n and S2 ⊂
H1×q. Denote T22 = Rl (B∗QT2

) , then the restricted matrix equation

XB = C, Rl (X) ⊆ T2, Nl (X) ⊇ S2

is consistent if and only if Rl (C) ⊆ T2B and Nl (C) ⊇ S2. In this case, the
general solution can be expressed as

X = QS⊥2 C (QT2B)
†

+QS⊥2 U2QT2 +QS⊥2 V2RQT2
BQT2

= QS⊥2 C (QT2
B)
†

+QS⊥2 Z2QT2
−QS⊥2 Z2QT22

= QS⊥2 C (QT2
B)
†

+QS⊥2 U2QT2
+QS⊥2 V2QT2∩Nl(B),

where U2, V2 and Z2 are arbitrary matrices with proper sizes. Suppose that
E∗2 ,K

∗
2 are full row rank matrices such that,

T2 = Nl (E2) , T2 ∩Nl (B) = Rl (K∗2 ) .

Then the general solution X = (xij) posses the determinantal representation:

xij =
rdetj (BB∗ + E2E

∗
2 +K2K

∗
2 )j. (di.)

det (BB∗ + E2E∗2 +K2K∗2 )
,

with d.i are the ith row vector of CB∗ + ZK2K
∗
2 for all i = 1, . . . ,m, j =

1, . . . , n, and Z is an arbitrary matrix over H with appropriate dimension.
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Remark 2.1. Similarly, we can get the corresponding results relate to the fol-
lowing restricted system of matrix equations{

A1X = C1

XB2 = C2,
Rl (X) ⊆ T1, Nl (X) ⊇ S1.

3. Determinantal expressions for the general solution to (2)

We begin this section by the following lemma.

Lemma 3.1 ([45]). Let A ∈ Hm×n, B ∈ Hs×q, C ∈ Hm×q, D ∈ Ht×q and
E ∈ Hm×q be given. Denote M = RAC, N = DLB , then the matrix equation
AXB + CY D = E is consistent if and only if RMRAE = 0, RAELD = 0,
ELBLN = 0, RCELD = 0.

Then we can show the main results of this section.

Theorem 3.2. Suppose that A ∈ Hm×n, B ∈ Ht×q and E ∈ Hm×q, T1 ⊂ Hn,
S1 ⊂ Hp, T2 ⊂ H1×t and S2 ⊂ H1×m are known, X ∈ Hn×q, Y ∈ Hm×t are
unknown. Denote M = RAPT1

QS⊥2 , N = QT2
BLP

S⊥1
, A∗RQ

S⊥2
A + A∗A = T

and I + LQT2
B = S. Then we can get the following results.

(a) The restricted quaternion matrix equation (2) is consistent if and only if

(12) RMRAPT1
E = 0, RAPT1

ELQT2
B = 0, ELP

S⊥1
LN = 0, RQ

S⊥2
ELQT2

B = 0.

In this case, the general solution of (2) can be expressed as

X = (TPT1)
†
CPS⊥1 + PT1

LAPT1
U1PS⊥1 + PT1

V1PS⊥1(13)

= (TPT1)
†
CPS⊥1 + PT1Z1PS⊥1 − PT11Z1PS⊥1

= (TPT1
)
†
CPS⊥1 + PT1∩Nr(A)U2PS⊥1 + PT1

V2PS⊥1 ,

Y = QS⊥2 (E −AX) (QT2
B)
†

+QS⊥2 V3RQT2
BQT2

.(14)

(b) Suppose that E∗1 ,K
∗
1 , E1 and K2 are full column rank matrices such that

T1 = Nr (E1) , T1∩Nr (T ) = Rr (K∗1 ) , T2 = Nl (E2) , T2∩Nr (B) = Rl (K∗2 ) .

Then X,Y posses the following determinantal expressions

(15) xij =
cdeti (A∗A+ E∗1E1 +K∗1K1).i (d.j)

det (A∗A+ E∗1E1 +K∗1K1)
,

(16) ykl =
rdetl (BB

∗ + E2E
∗
2 +K2K

∗
2 )l. (dk.)

det (BB∗ + E2E∗2 +K2K∗2 )
,

with d.j is the jth column vector of

T
(
A∗RQ

S⊥2
E +A∗ELQT2

B +A∗RQ
S⊥2
ELQT2

B + Y1

)
+K∗1K1Z1,
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dk. is the ith row vector of (E −AX)B∗ + Z2K2K
∗
2 for all i = 1, . . . , n, j =

1, . . . , q, k = 1, . . . ,m, l = 1, . . . , t, where Y1 is an arbitrary solution of the
system of matrix equations

A∗RQ
S⊥2
AT †Y1 = A∗AT †A∗RQ

S⊥2
E and Y1LQT2

B = A∗ELQT2
B ,

Z1 and Z2 are arbitrary matrix over H with appropriate dimensions.

Proof. Note that

Rr (X) ⊆ T1, Nr (X) ⊇ S1 ⇔ X = PT1
W1PS⊥1 and

Rl (Y ) ⊆ T2, Nl (Y ) ⊇ S2 ⇔ Y = QS⊥2 W2QT2 ,

then the restricted quaternion matrix equation (2) can be changed into

(17) APT1
W1PS⊥1 +QS⊥2 W2QT2

B = E,

without any restricted conditions on the unknown variables W1 and W2. It
follows from Lemma 3.1 that (2) is consistent if and only if (12) is satisfied.
Moreover, we can get the expression of the general solution (X,Y ) of (2) by
solving (W1,W2) in (17). However, it is a hard work for us to prove the de-
terminantal expressions of (X,Y ) through (W1,W2). In order to derive the
determinantal expression of (X,Y ), we need to find a system of matrix equa-
tions which not only have the same solution with (2) but also can be solved by
Cramer’s rules. By reducing the restricted condition of Y, the equation (2) can
be written as

(18) AX +QS⊥2 W2QT2
B = E, Rr (X) ⊆ T1, Nr (X) ⊇ S1.

Recall that the restricted quaternion matrix equation (18) is consistent relate
to W2 if and only if there exist matrix X such that

(19) RQ
S⊥2

(E −AX) = 0, (E −AX)LQT2
B = 0,Rr (X) ⊆ T1,Nr (X) ⊇ S1.

Thus the equation (2) and the system (19) have the same solution relate to
X. If these equalities in (12) are all satisfied, then (2) is consistent and (19) is
consistent too. In addition, if (19) is consistent then it has the same solution
with

(20)

{
A∗RQ

S⊥2
AX = A∗RQ

S⊥2
E

A∗AXLQT2
B = A∗ELQT2

B ,
Rr (X) ⊆ T1, Nr (X) ⊇ S1.

Denote T = A∗RQ
S⊥2
A + A∗A and S = I + LQT2

B , then we can prove the

system (20) and the following matrix equation

(21)
TXS =

(
A∗RQ

S⊥2
E +A∗ELQT2

B +A∗RQ
S⊥2
ELQT2

B + Y1

)
,

Rr (X) ⊆ T1, Nr (X) ⊇ S1
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have the same solution relate to X, where Y1 is an arbitrary solution of the
system of matrix equations

(22)

{
A∗RQ

S⊥2
AT †Y1 = A∗AT †A∗RQ

S⊥2
E,

Y1LQT2
B = A∗ELQT2

B .

Suppose that X0 is an arbitrary solution of (20), then

A∗RQ
S⊥2
AX0 = A∗RQ

S⊥2
E and A∗AX0LQT2

B = A∗ELQT2
B .

Setting Y1 = A∗AX0, it is easy to prove it satisfies the system (22). Moreover,(
A∗RQ

S⊥2
A+A∗A

)
X0

(
I + LQT2

B

)
= A∗RQ

S⊥2
E +A∗ELQT2

B +A∗RQ
S⊥2
ELQT2

B + Y1,

which is saying that every solution of (20) satisfies (21). For the other direction,
note that LQT2

B is an idempotent matrix, then I +LQT2
B is a positive matrix

and (21) can be written as

(23)
TX =

(
A∗RQ

S⊥2
E +A∗ELQT2

B +A∗RQ
S⊥2
ELQT2

B + Y1

)
S−1,

Rr (X) ⊆ T1, Nr (X) ⊇ S1.

Suppose that X1 is an arbitrary solution of (21), then it can be expressed as

X1 = T †
(
A∗RQ

S⊥2
E +A∗ELQT2

B +A∗RQ
S⊥2
ELQT2

B + Y10

)
S−1 + LTZ,

where Y10 is a special solution of (22) and Z is an arbitrary matrix with proper
size. Taking it into the first equation in (20) gives

A∗RQ
S⊥2
AX1

=A∗RQ
S⊥2
A
(
T †
(
A∗RQ

S⊥2
E+A∗ELQT2

B+A∗RQ
S⊥2
ELQT2

B+Y1

)
S−1+LTZ

)
=A∗RQ

S⊥2
AT †

(
A∗RQ

S⊥2
E+A∗ELQT2

B+A∗RQ
S⊥2
ELQT2

B+Y1

)
S−1

=A∗RQ
S⊥2
AT †A∗RQ

S⊥2
ES−1+A∗RQ

S⊥2
AT †A∗ELQT2

BS
−1

+A∗AT †A∗RQ
S⊥2
ES−1+A∗RQ

S⊥2
AT †A∗RQ

S⊥2
ELQT2

BS
−1

=A∗RQ
S⊥2
AT †A∗RQ

S⊥2
E
(
I+LQT2

B

)
S−1+A∗AT †A∗RQ

S⊥2
E
(
I+LQT2

B

)
S−1

=TT †A∗RQ
S⊥2
ESS−1 = A∗RQ

S⊥2
E.

Similarly, we can get A∗AX1LQT2
B = A∗ELQT2

B . Combine the above, we

can derive that the system (20) and the equation (21) have the same solution.
Moreover, if (12) is satisfied, then for any solution Y1 of the system (22) we
can get

Rr
(
A∗RQ

S⊥2
E +A∗ELQT2

B +A∗RQ
S⊥2
ELQT2

B + Y1

)
⊆MT1,
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which is saying that the restricted matrix equation (21) is consistent. By Corol-
lary 2.6, the general solution of (23) can be expressed as (13) which possessing
the determinantal expressions as (15). Taking X into the equation (2) gives

Y B = E −AX, Rl (Y ) ⊆ T2, Nl (Y ) ⊇ S2.

Then by Corollary 2.7, Y can be expressed as (14) and possessing the determi-
nantal expression (16). �

Corollary 3.3. Let A ∈ Hm×n, B ∈ Ht×q and E ∈ Hm×q be given such that

(24) AX + Y B = E

is consistent. Suppose that K∗,M∗ and L are full column rank matrices such
that Nr (RA) = Rr (K∗) , Nr (A) = Rr (M∗) and Nr (B∗) = Rr (L) . Then its
general solution can be expressed as

(25)

xij =
rdetj (RA +K∗K)j. (fi.)

det (RA +K∗K)
,

ykl =
rdetj (BB∗ + LL∗)j.

(
cAk.
)

det (RA +K∗K) det (BB∗ + LL∗)
,

where fi. is the ith column vector of A† (E −XB) +M∗MH and

cAk. :=
[

cdeti (RA +K∗K).i (d.1) , . . . , cdeti (RA +K∗K).i (d.n)
]

with di. is the ith row vector of RAEB
∗ + (RA +K∗K)V2RBLL

∗ for all i =
1, . . . , n, j = 1, . . . , q, k = 1, . . . ,m, l = 1, . . . , t, V2 and H are arbitrary
matrices with proper sizes.

Proof. If (24) is consistent, then it has the same solution set of Y with the
matrix equation RAY B = RAE. And by Lemma 2.2, Y can be expressed as
Y = RAEB

† + LRA
V1 + V2RB , where V1 an V2 are arbitrary matrices with

proper size. Denote Nr (RA) = Rr (K∗) , Nr (B∗) = Rr (L) , then RA +K∗K,
BB∗ + LL∗ are nonsingular and RAK

∗ = 0, B∗L = 0. Moreover, it can be
verified that

(RA +K∗K)Y (BB∗ + LL∗) = RAEB
∗ + (RA +K∗K)V2RBLL

∗.

Thus by Lemma 2.1, Y can be written as (25). Taking Y into the equation
(24) gives

(26) AX = E − Y B.
And the solution of (26) can be expressed as X = A† (E − Y B) +LAH, where
H is an arbitrary matrix with proper size. Denote Nr (A) = Rr (M∗) , then
A∗A + M∗M is nonsingular and M∗MA† = 0. It follows that X satisfies the
following matrix equation

(A∗A+M∗M)
(
A† (E −XB) + LAH

)
= A† (E −XB) +M∗MH,

whose coefficient matrix is nonsingular. Thus by Lemma 2.1, X can be ex-
pressed as (25). �
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Remark 3.1. Similarly, we can get the corresponding results relate to the fol-
lowing restricted quaternion matrix equation

AX + Y B = E, Rl (X) ⊆ T1, Nl (X) ⊇ S1, Rr (Y ) ⊆ T2, Nr (Y ) ⊇ S2.

4. Conclusion

In this paper, we consider the determinantal representations for the general
solution to (1) and (2), respectively. Corresponding results on some special
cases are also given. Motivated by the work in this paper, it would be of
interest to investigate the determinantal representation for the general solution
to the following consistent system of quaternion matrix equations{

A1XB1 = C1

A2XB2 = C2,
Rr (X) ⊆ T1, Nr (X) ⊇ S1,

and

AXB + CY D = E, Rr (X) ⊆ T1, Nr (X) ⊇ S1, Rr (Y ) ⊆ T2, Nr (Y ) ⊇ S2,

respectively. We will show the results in the following paper.

References

[1] S. L. Adler, Quaternionic Quantum Mechanics and Quantum Fields, International Se-
ries of Monographs on Physics, 88, The Clarendon Press, Oxford University Press, New

York, 1995.

[2] H. Aslaksen, Quaternionic determinants, Math. Intelligencer 18 (1996), no. 3, 57–65.
[3] Z. Bai, S. Zhang, S. Sun, and C. Yin, Monotone iterative method for a class of fractional

differential equations, Electronic Journal of Differential Equations 2016 (2016), 1–8.
[4] A. Ben-Israel, A Cramer rule for least-norm solutions of consistent linear equations,

Linear Algebra Appl. 43 (1982), 223–226.

[5] J. Cai and G. Chen, On determinantal representation for the generalized inverse A
(2)
T,S

and its applications, Numer. Linear Algebra Appl. 14 (2007), no. 3, 169–182.

[6] L. X. Chen, Definition of determinant and Cramer solutions over the quaternion field,
Acta Math. Sinica (N.S.) 7 (1991), no. 2, 171–180.

[7] , Inverse matrix and properties of double determinant over quaternion field, Sci.
China Ser. A 34 (1991), no. 5, 528–540.

[8] Y. Chen, A Cramer rule for solution of the general restricted linear equation, Linear

Multilinear Algebra 40 (1995), 61–68.
[9] N. Cohen and S. De Leo, The quaternionic determinant, Electron. J. Linear Algebra 7

(2000), 100–111.

[10] J. H. Conway and D. A. Smith, On Quaternions and Octonions: Their Geometry, Arith-
metic, and Symmetry, A K Peters, Ltd., Natick, MA, 2003.

[11] F. J. Dyson, Quaternion determinants, Helv. Phys. Acta 45 (1972), 289–302.

[12] I. M. Gelfand and V. S. Retakh, A determinants of matrices over noncommutative
rings, Funct. Anal. Appl. 25 (1991), no. 2, 91–102; translated from Funktsional. Anal.
i Prilozhen. 25 (1991), no. 2, 13–25, 96.

[13] , A theory of noncommutative determinants and characteristic functions of

graphs, Funct. Anal. Appl. 26 (1992), no. 4, 231–246 (1993); translated from Funkt-

sional. Anal. i Prilozhen. 26 (1992), no. 4, 1–20, 96.
[14] S. Gupta, Linear quaternion equations with application to spacecraft attitude propaga-

tion, IEEE Proceedings of Aerospace Conference 1 (1998), 69–76.



1300 G.-J. SONG

[15] W. R. Hamilton, On quaternions or on a new system of imaginaries in algebra, Philos.

Mag. 25 (1844), no. 3, 489–495.

[16] T. Jiang, X. Cheng, and S. Ling, An algebraic relation between consimilarity and simi-
larity of quaternion matrices and applications, J. Appl. Math. 2014 (2014), Article ID

795203, 5 pages.
[17] T. Jiang, Z. Jiang, and S. Ling, An algebraic method for quaternion and complex least

squares coneigen-problem in quantum mechanics, Appl. Math. Comput. 249 (2014),

222–228.
[18] J. B. Kuipers, Quaternions and Rotation Sequences, Princeton University Press, Prince-

ton, NJ, 1999.

[19] I. Kyrchei, Cramer’s rule for quaternionic system of linear equations, J. Math. Sci.
(N.Y.) 155 (2008), no. 6, 839–858; translated from Fundam. Prikl. Mat. 13 (2007), no.

4, 67–94.

[20] , Determinantal representations of the Moore-Penrose inverse over the quater-
nion skew field and corresponding Cramer’s rules, Linear Multilinear Algebra 59 (2011),

no. 4, 413–431.

[21] , Explicit representation formulas for the minimum norm least squares solutions

of some quaternion matrix equations, Linear Algebra Appl. 438 (2013), no. 1, 136–152.

[22] , Determinantal representations of the Drazin inverse over the quaternion skew
field with applications to some matrix equations, Appl. Math. Comput. 238 (2014),

193–207.

[23] , Explicit determinantal representation formulas of W -weighted Drazin inverse
solutions of some matrix equations over the quaternion skew field, Math. Probl. Eng.

(2016), Art. ID 8673809, 13 pp.

[24] , Determinantal representations of solutions to systems of quaternion matrix
equations, Adv. Appl. Clifford Algebr. 28 (2018), no. 1, 28:23.

[25] G. Li and M. Chen, On uniqueness of strong solution of stochastic systems, Abstr. Appl.

Anal. (2014), Art. ID 890925, 6 pp.
[26] H. Li and F. Sun, Existence of solutions for integral boundary value problems of second-

order ordinary differential equations, Bound. Value Probl. 2012 (2012), 147, 7 pp.
[27] H. Li and J. Sun, Positive solutions of superlinear semipositone nonlinear boundary

value problems, Comput. Math. Appl. 61 (2011), no. 9, 2806–2815.

[28] S. Ling, X. Cheng, and T. Jiang, An algorithm for coneigenvalues and coneigenvectors
of quaternion matrices, Adv. Appl. Clifford Algebr. 25 (2015), no. 2, 377–384.

[29] H. Ma and T. Hou, A separation theorem for stochastic singular linear quadratic control

problem with partial information, Acta Math. Appl. Sin. Engl. Ser. 29 (2013), no. 2,
303–314.

[30] S. K. Mitra, Common solutions to a pair of linear matrix equations A1XB1 =

C1, A2XB2 = C2, Proc. Cambridge Philos. Soc. 74 (1973), 213–216.
[31] G. Nebe, Finite quaternionic matrix groups, Represent. Theory 2 (1998), 106–223.

[32] A. Rehman, Q. W. Wang, I. Ali, M. Akram, and M. O. Ahmad, A constraint system

of generalized Sylvester quaternion matrix equations, Adv. Appl. Clifford Algebr. 27
(2017), no. 4, 3183–3196.

[33] S. M. Robinson, A short proof of Cramer’s rule, Math. Mag. 43 (1970), no. 2, 94–95.

[34] S.J. Sangwine, Fourier transforms of colour images using quaternion or hyper-complex
number, Electron. Lett. 32 (1996), no. 21, 1979–1980.

[35] S. J. Sangwine and T. A. Ell, Colour image filters based on hypercomplex convolution,

IEEE Proc. Vis., Image Signal Process. 147 (2000), no. 2, 89–93.
[36] K. Shoemake, Animating rotation with quaternion curves, Comput. Graph. 19 (1985),

no. 3, 245–254.
[37] G.-J. Song, Determinantal representation of the generalized inverses over the quaternion

skew field with applications, Appl. Math. Comput. 219 (2012), no. 2, 656–667.



A RESTRICTED SYSTEM OF QUATERNION MATRIX EQUATIONS 1301

[38] , Characterization of the W-weighted Drazin inverse over the quaternion skew

field with applications, Electron. J. Linear Algebra 26 (2013), 1–14.

[39] G.-J. Song and Q.-W. Wang, Condensed Cramer rule for some restricted quaternion
linear equations, Appl. Math. Comput. 218 (2011), no. 7, 3110–3121.

[40] G.-J. Song, Q.-W. Wang, and H.-X. Chang, Cramer rule for the unique solution of
restricted matrix equations over the quaternion skew field, Comput. Math. Appl. 61

(2011), no. 6, 1576–1589.

[41] G. C. Verghese, A “Cramer rule” for the least-norm, least-squared-error solution of
inconsistent linear equations, Linear Algebra Appl. 48 (1982), 315–316.

[42] G. R. Wang, A Cramer rule for minimum-norm (T ) least-squares (S) solution of in-

consistent linear equations, Linear Algebra Appl. 74 (1986), 213–218.
[43] , A Cramer rule for finding the solution of a class of singular equations, Linear

Algebra Appl. 116 (1989), 27–34.

[44] G. Wang, Y. Wei, and S. Qiao, Generalized Inverses: Theory and Computations, Science,
Beijing, 2004,

[45] Q.-W. Wang, A system of matrix equations and a linear matrix equation over arbitrary

regular rings with identity, Linear Algebra Appl. 384 (2004), 43–54.

[46] Y. Yu and Y. Wei, Determinantal representation of the generalized inverse A
(2)
T,S over

integral domains and its applications, Linear Multilinear Algebra 57 (2009), no. 6, 547–

559.

[47] S. Yuan, Q. Wang, Y. Yu, and Y. Tian, On Hermitian solutions of the split quaternion
matrix equation AXB + CXD = E, Adv. Appl. Clifford Algebr. 27 (2017), no. 4,

3235–3252.

Guang-Jing Song
School of Science

Shanghai University

Shanghai 200444, P. R. China
and

School of Mathematics and Information Sciences

Weifang University
Weifang 261061, P. R. China

Email address: sgjshu@163.com


