• Title/Summary/Keyword: quasi-ideals

Search Result 52, Processing Time 0.021 seconds

ON TRIPOLAR FUZZY IDEALS IN ORDERED SEMIGROUPS

  • NUTTAPONG WATTANASIRIPONG;NAREUPANAT LEKKOKSUNG;SOMSAK LEKKOKSUNG
    • Journal of applied mathematics & informatics
    • /
    • v.41 no.1
    • /
    • pp.133-154
    • /
    • 2023
  • In this paper, we introduce the concept of tripolar fuzzy sub-semigroups, tripolar fuzzy ideals, tripolar fuzzy quasi-ideals, and tripolar fuzzy bi-ideals of an ordered semigroup and study some algebraic properties of them. Moreover, we prove that tripolar fuzzy bi-ideals and quasi-ideals coincide only in a particular class of ordered semigroups. Finally, we prove that every tripolar fuzzy quasi-ideal is the intersection of a tripolar fuzzy left and a tripolar fuzzy right ideal.

INTRINSIC PRODUCT OF INTUITIONISTIC FUZZY SUBRINGS/IDEALS IN RINGS

  • JUN, YOUNG BAE;PARK, CHUL HWAN
    • Honam Mathematical Journal
    • /
    • v.28 no.4
    • /
    • pp.439-469
    • /
    • 2006
  • Intrinsic product of intuitionistic fuzzy sets are considered. Using this, characterizations of intuitionistic fuzzy subrings/ideals are discussed. The notions of intuitionistic fuzzy quasi ideals and intuitionistic fuzzy bi-ideals are introduced. Characterizations of regular rings are provided.

  • PDF

HESITANT FUZZY p-IDEALS AND QUASI-ASSOCIATIVE IDEALS IN BCI-ALGEBRAS

  • Jun, Young Bae;Roh, Eun Hwan;Ahn, Sun Shin
    • Honam Mathematical Journal
    • /
    • v.44 no.2
    • /
    • pp.148-164
    • /
    • 2022
  • The main purpose of this paper is to apply the notion of hesitant fuzzy sets to an algebraic structure, so called a BCI-algebra. The primary goal of the study is to define hesitant fuzzy p-ideals and hesitant fuzzy quasi-associative ideals in BCI-algebras, and to investigate their properties and relations.

RING WHOSE MAXIMAL ONE-SIDED IDEALS ARE TWO-SIDED

  • Huh, Chan;Jang, Sung-Hee;Kim, Chol-On;Lee, Yang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.39 no.3
    • /
    • pp.411-422
    • /
    • 2002
  • In this note we are concerned with relationships between one-sided ideals and two-sided ideals, and study the properties of polynomial rings whose maximal one-sided ideals are two-sided, in the viewpoint of the Nullstellensatz on noncommutative rings. Let R be a ring and R[x] be the polynomial ring over R with x the indeterminate. We show that eRe is right quasi-duo for $0{\neq}e^2=e{\in}R$ if R is right quasi-duo; R/J(R) is commutative with J(R) the Jacobson radical of R if R[$\chi$] is right quasi-duo, from which we may characterize polynomial rings whose maximal one-sided ideals are two-sided; if R[x] is right quasi-duo then the Jacobson radical of R[x] is N(R)[x] and so the $K\ddot{o}the's$ conjecture (i.e., the upper nilradical contains every nil left ideal) holds, where N(R) is the set of all nilpotent elements in R. Next we prove that if the polynomial rins R[x], over a reduced ring R with $\mid$X$\mid$ $\geq$ 2, is right quasi-duo, then R is commutative. Several counterexamples are included for the situations that occur naturally in the process of this note.

ON QB-IDEALS OF EXCHANGE RINGS

  • Chen, Huanyin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.46 no.5
    • /
    • pp.873-884
    • /
    • 2009
  • We characterize QB-ideals of exchange rings by means of quasi-invertible elements and annihilators. Further, we prove that every $2\times2$ matrix over such ideals of a regular ring admits a diagonal reduction by quasi-inverse matrices. Prime exchange QB-rings are studied as well.

ON QUASI-STABLE EXCHANGE IDEALS

  • Chen, Huanyin
    • Journal of the Korean Mathematical Society
    • /
    • v.47 no.1
    • /
    • pp.1-15
    • /
    • 2010
  • We introduce, in this article, the quasi-stable exchange ideal for associative rings. If I is a quasi-stable exchange ideal of a ring R, then so is $M_n$(I) as an ideal of $M_n$(R). As an application, we prove that every square regular matrix over quasi-stable exchange ideal admits a diagonal reduction by quasi invertible matrices. Examples of such ideals are given as well.

IDEAL THEORY IN ORDERED SEMIGROUPS BASED ON HESITANT FUZZY SETS

  • Ahn, Sun Shin;Lee, Kyoung Ja;Jun, Young Bae
    • Honam Mathematical Journal
    • /
    • v.38 no.4
    • /
    • pp.783-794
    • /
    • 2016
  • The notions of hesitant fuzzy left (resp., right, bi-, quasi-) ideals are introduced, and several properties are investigated. Relations between a hesitant fuzzy left (resp., right) ideal,a hesitant fuzzy bi-ideal and a hesitant fuzzy quasi-ideal are discussed. Characterizations of hesitant fuzzy left (resp., right, bi-, quasi-) ideals are considered.