JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume **26**, No. 4, November 2013 http://dx.doi.org/10.14403/jcms.2013.26.4.781

A NOTE ON QUASI-*-INVERTIBLE AND *-INVERTIBLE IDEALS

HWANKOO KIM* AND DONG YEOL OH**

ABSTRACT. Let * be a star-operation on an integral domain R. We show that if R is a $*_w$ -Noetherian domain, then quasi- $*_w$ -invertible prime $*_w$ -ideals of R are minimal, and prime ideals of R minimal over a $*_w$ -invertible $*_w$ -ideal are minimal.

1. Introduction

The concept of quasi-invertibility of a prime ideal was first introduced by Krull in [8]. A prime ideal P is said to be quasi-invertible if $P \subset PP^{-1}$. In [2], Butts showed that if every proper prime ideal of R is quasiinvertible, then R is a Dedekind domain. Also in [9], Perić showed that in a Noetherian domain, quasi-invertible prime ideals are minimal, and prime ideals minimal over an invertible ideal are minimal. Recently in [3], Chang gave a characterization of Krull domains, which is analogous to Butts' result. Finally in [7], Kim and Park generalized the notion of quasi-invertibility for prime ideals to that in the setting equipped with arbitrary star-operations and any (nonzero) ideals. Analogously to Butts' result, they also characterized Krull domains. In this article, we generalize and unify the results due to Perić ([9]).

Let R be an integral domain with quotient field K and $\mathfrak{F}(R)$ be the set of nonzero fractional ideals of R. A mapping $A \mapsto A_*$ of $\mathfrak{F}(R)$ into $\mathfrak{F}(R)$ is called a *star-operation* on R if the following conditions are satisfied for all $a \in K \setminus \{0\}$ and $A, B \in \mathfrak{F}(R)$:

(i) $(aR)_* = aR, (aA)_* = aA_*;$

(ii) $A \subseteq A_*$, if $A \subseteq B$ then $A_* \subseteq B_*$; and

Received July 30, 2013; Accepted September 27, 2013.

²⁰¹⁰ Mathematics Subject Classification: Primary 13A15, 13E05; Secondary 16P50.

Key words and phrases: quasi- \ast -invertible, \ast -invertible ideal, \ast -Noetherian domain.

Correspondence should be addressed to Dong Yeol Oh, dongyeol70@gmail.com.

(iii) $(A_*)_* = A_*$.

Let * be any star-operation on R. It is easy to show that for all $A, B \in \mathfrak{F}(R)$, $(AB)_* = (AB_*)_* = (A_*B_*)_*$. An $A \in \mathfrak{F}(R)$ is called a *-*ideal* if $A = A_*$; A is said to be *-*invertible* if $(AA^{-1})_* = R$, where $A^{-1} = \{x \in K | xA \subseteq R\}$; and A is said to be of *finite type* if $A_* = B_*$ for some finitely generated ideal B of R.

Given any star-operation * on R, we can construct two new staroperations $*_f$ and $*_w$ induced by *. For all $A \in \mathfrak{F}(R)$, the $*_f$ -operation is defined by $A_{*_f} = \bigcup \{B_* \mid B \in \mathfrak{F}(R), B \text{ is finitely generated, and } B \subseteq A \}$ and the $*_w$ -operation is defined by $A_{*_w} = \{x \in K \mid Bx \subseteq A \text{ for some } B \in GV^*(R)\}$, where $GV^*(R)$ is the set of nonzero finitely generated ideals B of R with $B_* = R$. Clearly, if $A \in \mathfrak{F}(R)$ is finitely generated, then $A_* = A_{*_f}$. We say that * is of finite character if $* = *_f$ and that $*_f$ is the finite character star-operation induced by *. It is known that the $*_w$ -operation is also a finite character star-operation on R ([1, Theorem 2.7]). It is well known that if $* = *_f$, then each prime ideal minimal over a *-ideal is a prime *-ideal (in particular, each height-one prime ideal is a prime *-ideal).

The most important examples of star-operations are (1) the *d*-operation defined by $A_d := A$, (2) the *v*-operation defined by $A_v := (A^{-1})^{-1}$, (3) the *t*-operation defined by $A_t := A_{v_f}$, and (4) the *w*-operation defined by $A_w := A_{v_w} (= \{x \in K \mid Bx \subseteq A \text{ for some finitely generated ideal } B \text{ of}$ $R \text{ with } B^{-1} = R\})$ for all $A \in \mathfrak{F}(R)$. Note that all star-operations above except for *v* are of finite character. For any star-operation * on R and for any $A \in \mathfrak{F}(R)$, we have that $A \subseteq A_* \subseteq A_v$, $A \subseteq A_{*w} \subseteq A_{*f} \subseteq A_t$, and $A_{*w} \subseteq A_w$; so $(A_*)_v = A_v = (A_v)_*$ and $(A_{*f})_t = A_t = (A_t)_{*f}$. In particular, a *v*-ideal (resp., *t*-ideal) is a *-ideal (resp., $*_f$ -ideal).

Let * be a star-operation on R. Then R is called a *-Noetherian domain if R has the ascending chain condition on integral *-ideals of R. It is well known that R is a *- Noetherian domain if and only if every integral *-ideal of R is of finite type and that if R is a *-Noetherian domain, then $*=*_f$ ([11, Theorem 1.1]). Recall that a *-Noetherian domain R is a Mori domain when *=v (or *=t); R is a strong Mori domain (SM domain) when *=w; and R is just the usual Noetherian domain when *=d. For any two star-operations $*_1$ and $*_2$ on R, $*_1 \leq *_2$ means that $A_{*_1} \subseteq A_{*_2}$ for all $A \in \mathfrak{F}(R)$. Note that $d \leq w \leq t \leq v$. It is clear that if R is a $*_1$ -Noetherian domain, then R is also a $*_2$ -Noetherian domain for any star-operations $*_1 \leq *_2$ on R. Thus we have the following implications: Noetherian domain \Rightarrow SM domain \Rightarrow Mori domain.

782

In this article, we show that for a star-operation * on an integral domain R, if R is a $*_w$ -Noetherian domain, then quasi- $*_w$ -invertible prime $*_w$ -ideals of R are minimal, and prime ideals of R minimal over a $*_w$ -invertible $*_w$ -ideal are minimal (quasi-*-invertibility will be defined in Section 2). As corollaries, we obtain the results [9, Satzs 1 and 2] done by Perić and the similar results on an SM domain.

General references for any undefined terminology or notation are [4, 6].

2. Main results

Let * be a star-operation. Recall from [7] that a nonzero proper ideal I is said to be *quasi-*-invertible* if $I_* \subset (II^{-1})_*$. Clearly any *-invertible *-ideal is quasi-*-invertible.

Hereafter we let * be a star-operation on an integral domain such that $* = *_w$.

THEOREM 2.1. Let R be a *-Noetherian domain and let P be a quasi-*-invertible prime *-ideal of R. Then P is minimal.

Proof. Since R is a *-Noetherian domain, by [5, Corollary 2.13] R_P is a Noetherian domain. Since P is quasi-*-invertible and R_P is a local ring with the maximal ideal PR_P , we have

$$R_P = (PP^{-1})R_P = (PR_P)(P^{-1}R_P) \subseteq (PR_P)(PR_P)^{-1} \subseteq R_P.$$

Thus PR_P is invertible, and so principal. Thus by Krull's principal ideal theorem ([6, Theorem 142]), PR_P is height-one. Since $ht(P) = ht(PR_P)$, P is minimal.

Without using localization technique, Theorem 2.1 can be seen as follows:

Put $C := (PP^{-1})_*$. For any $0 \neq p \in P$, we have

(2.1)
$$pC = p(PP^{-1})_* = (BP)_*, \text{ where } B := P^{-1}p \subseteq R$$

Since P is quasi-*-invertible, one can choose an element $p \in P$ such that $B \not\subseteq P$. Since $p \in P$, P contains a minimal prime *-ideal P' over Rp, i.e., $P' \subseteq P$. If $P' \neq P$, then by (2.1) we have $B \subseteq P' \subseteq P$, because $BP \subseteq Rp \subseteq P'$ and P' is a prime ideal of R. This is a contradiction to the condition that $B \not\subseteq P$. Thus we have P' = P, i.e., P is a minimal prime ideal over Rp. Therefore by [1, Corollary 3.7], P is minimal.

Applying Theorem 2.1 to the cases when * = d and * = w, we can get the following:

Hwankoo Kim and Dong Yeol Oh

- COROLLARY 2.2. 1. ([9, Satz 1]) Let P be a quasi-invertible prime ideal of a Noetherian domain R. Then P is minimal.
- Let P be a quasi-w-invertible prime w-ideal of an SM domain R. Then P is minimal.

The generalized principal ideal theorem (GPIT) states that in a Noetherian domain R, if P is a prime ideal of R minimal over an ideal generated by n elements, then $ht(P) \leq n$ ([6, Theorem 152]). When n = 1, this theorem is well known as Krull's principal ideal theorem (PIT). This was generalized to SM domains by Wang and McCasland in [10, Corollary 1.12]. They proved that in an SM domain R, a prime ideal of R minimal over a w-ideal $(a_1, \ldots, a_n)_w$ has height at most n. By Anderson and Cook, it was shown that $*_w$ -Noetherian domains also satisfy the GPIT ([1, Corollary 3.7]).

Now we give a variant of the GPIT for $*_w$ -Noetherian domains. We first introduce the following simple lemma.

LEMMA 2.3. Let A be a *-invertible *-ideal in a *-Noetherian domain R and let P be a prime *-ideal of R. Then there is an element $a \in A$ such that $aA^{-1} \not\subseteq P$.

Proof. Suppose that P is a prime *-ideal of R and A is a *-invertible *ideal of R. If $AA^{-1} \subseteq P$, then $R = (AA^{-1})_* = P_* = P$, a contradiction. So $AA^{-1} \not\subseteq P$, which implies that there exists an element $a \in A$ such that $aA^{-1} \not\subseteq P$.

Note that Lemma 2.3 holds without the assumption that R is a *-Noetherian domain.

THEOREM 2.4. Let R be a *-Noetherian domain and A be a *invertible *-ideal of R. Then every prime ideal of R minimal over A is minimal.

Proof. Let R be a *-Noetherian domain and A be a *-invertible *ideal of R. Since $* = *_w$ is of finite character, we note that a prime ideal of R minimal over a *-ideal of R is also a *-ideal. Suppose that P is a prime ideal of R which is minimal over A. Then P is also a *-ideal. By Lemma 2.3, we can choose an element $a \in A$ such that $aA^{-1} \not\subseteq P$. Put $B := aA^{-1}$. Then $(BA)_* = a(AA^{-1})_* = aR \subseteq A \subseteq P$; so P contains a prime ideal Q of R which is minimal over aR. Note that since R is a *-Noetherian domain, every prime ideal of R which is minimal over aR is minimal by [1, Corollary 3.7]. Hence Q is minimal. Since $BA \subseteq (BA)_* \subseteq Q \subseteq P$ and $B \not\subseteq P$, we have $B \not\subseteq Q$. Thus $A \subseteq Q$. Obviously, Q is a minimal prime ideal over A, and so Q = P. Thus P is minimal.

Note that Theorem 2.4 can be proved by localization technique as in the proof of Theorem 2.1.

Applying Theorem 2.4 to the case when * = d or * = w, we can get the following:

- COROLLARY 2.5. 1. ([9, Satz 2]) Every prime ideal of a Noetherian domain which is minimal over an invertible ideal is minimal.
- 2. Every prime ideal of an SM domain which is minimal over a winvertible w-ideal is minimal.

Lemma 2.3 plays an important role in the proof of Theorem 2.4. In fact, we can get a stronger result than Lemma 2.3 as follows:

PROPOSITION 2.6. Let A be a *-invertible *-ideal in a *-Noetherian domain R and let P_i (i = 1, ..., n) be prime *-ideals of R. Then there is a *-ideal B which is not contained in any P_i (i = 1, ..., n), so that

 $(2.2) (BA)_* = Ra$

with a suitable $a \in A$.

Proof. Note that for each $a \in A$, Equation (2.2) follows from $(AA^{-1})_* = R$ by multiplying with a. Now we show that there is an element $a \in A$ such that $A^{-1}a \not\subseteq P_i$ for any $i = 1, \ldots, n$ by using the induction on n. First, assume that n = 1. By Lemma 2.3, it is true. Suppose that the assertion is true for n - 1 (n > 1), i.e., there is an $a' \in A$ such that $A^{-1}a' \not\subseteq P_i$ $(i = 1, \ldots, n - 1)$. Let $\{P_i \mid i = 1, 2, \ldots, n\}$ be a set of prime *-ideals of R. Obviously, we can assume that $P_i \not\subseteq P_j$ for $i \neq j$. Under this assumption, for each $i = 1, \ldots, n$, there is a $p_i \in P_i$ with the property that $p_i \notin P_j$ for all $j \neq i$. Now we take $a = p_n a' + pa'$, where $p = p_1 \cdots p_{n-1}$. It is easy to see that for this a, the condition $A^{-1}a \not\subseteq P_i$ $(i = 1, \ldots, n)$ has been assured. \Box

Acknowledgments

We would like to thank the referees for several helpful comments.

References

 D. D. Anderson and S. J. Cook, Two star-operations and their induced lattices, Comm. Algebra 28 (2000), 2461-2475.

Hwankoo Kim and Dong Yeol Oh

- [2] H. S. Butts, Quasi-invertible prime ideals, Proc. Amer. Math. Soc. 16 (1965), 291-292.
- [3] G. W. Chang, Quasi-invertible prime t-ideals, Houston J. Math. 33 (2007), 385-389.
- [4] R. Gilmer, *Multiplicative Ideal Theory*, Queen's Papers in Pure Appl. Math. vol. 90, Queen's University, Kingston, Ontario, Canada, 1992.
- [5] C. J. Hwang and J. W. Lim, A note on *w-Noetherian domains, Proc. Amer. Math. Soc. 141 (2013), 1199-1209.
- [6] I. Kaplansky, *Commutative Rings*, Polygonal Publishing House, Washington, New Jersey, 1994.
- [7] H. Kim and Y. S. Park, Some characterizations of Krull domains, J. Pure Appl. Algebra 208 (2007), 339-344.
- [8] W. Krull, Über den Aufbau des Nullideals in ganz abgeschlossenen Ringen mit Teilerkettensats, Math. Ann. 102 (1929), 363-369.
- [9] V. Perić, Eine Bemerkung zu den invertierbaren und fast invertierbaren Idealen, Arch. Math. (Basel) 15 (1964), 415-417.
- [10] F. Wang and R. L. McCasland, On w-modules over strong Mori domains, Comm. Algebra 25 (1997), 1285-1306.
- [11] M. Zafrullah, Ascending chain conditions and star operations, Comm. Algebra 17 (1989), 1523-1533.

*

Department of Information Security Hoseo University Asan 336-795, Republic of Korea *E-mail*: hkkim@hoseo.edu

**

Division of Liberal Arts Hanbat National University Daejeon 305-719, Republic of Korea *E-mail*: dongyeol70@gmail.com

786