• Title/Summary/Keyword: quartic function

Search Result 20, Processing Time 0.019 seconds

CIRCLE APPROXIMATION BY QUARTIC G2 SPLINE USING ALTERNATION OF ERROR FUNCTION

  • Kim, Soo Won;Ahn, Young Joon
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.17 no.3
    • /
    • pp.171-179
    • /
    • 2013
  • In this paper we present a method of circular arc approximation by quartic B$\acute{e}$zier curve. Our quartic approximation method has a smaller error than previous quartic approximation methods due to the alternation of the error function of our quartic approximation. Our method yields a closed form of error so that subdivision algorithm is available, and curvature-continuous quartic spline under the subdivision of circular arc with equal-length until error is less than tolerance. We illustrate our method by some numerical examples.

ON THE GENERAL SOLUTION OF A QUARTIC FUNCTIONAL EQUATION

  • Chung, Jukang-K.;Sahoo, Prasanna, K.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.40 no.4
    • /
    • pp.565-576
    • /
    • 2003
  • In this paper, we determine the general solution of the quartic equation f(x+2y)+f(x-2y)+6f(x) = 4[f(x+y)+f(x-y)+6f(y)] for all x, $y\;\in\;\mathbb{R}$ without assuming any regularity conditions on the unknown function f. The method used for solving this quartic functional equation is elementary but exploits an important result due to M. Hosszu [3]. The solution of this functional equation is also determined in certain commutative groups using two important results due to L. Szekelyhidi [5].

A GENERALIZED ADDITIVE-QUARTIC FUNCTIONAL EQUATION AND ITS STABILITY

  • HENGKRAWIT, CHARINTHIP;THANYACHAROEN, ANURK
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.6
    • /
    • pp.1759-1776
    • /
    • 2015
  • We determine the general solution of the generalized additive-quartic functional equation f(x + 3y) + f(x - 3y) + f(x + 2y) + f(x - 2y) + 22f(x) - 13 [f(x + y) + f(x - y)] + 24f(y) - 12f(2y) = 0 without assuming any regularity conditions on the unknown function f : ${\mathbb{R}}{\rightarrow}{\mathbb{R}}$ and its stability is investigated.

FUNDAMENTAL UNITS AND REGULATORS OF AN INFINITE FAMILY OF CYCLIC QUARTIC FUNCTION FIELDS

  • Lee, Jungyun;Lee, Yoonjin
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.2
    • /
    • pp.417-426
    • /
    • 2017
  • We explicitly determine fundamental units and regulators of an infinite family of cyclic quartic function fields $L_h$ of unit rank 3 with a parameter h in a polynomial ring $\mathbb{F}_q[t]$, where $\mathbb{F}_q$ is the finite field of order q with characteristic not equal to 2. This result resolves the second part of Lehmer's project for the function field case.

Determination of the Forming Limit Strain of Sheet Metal Using Inverse Quartic Curve Fitting (역4차식 곡선근사에 의한 판재 성형한계변형률의 결정)

  • Lee, J.S.;Kim, J.D.;Kim, H.J.
    • Transactions of Materials Processing
    • /
    • v.22 no.6
    • /
    • pp.328-333
    • /
    • 2013
  • The current study aims to determine the limit strains more accurately and reasonably when producing a forming limit curve (FLC) from experiments. The international standard ISO 12004-2 in its recent version (2008) states that the limit major strain should be determined by using the best-fit inverse second-order parabola through the experimental strain distribution. However, in cases where fracture does not occur at the center of the specimen, due to insufficient lubrication, the inverse parabola does not give a realistic fit because of its intrinsic symmetry in shape. In this study it is demonstrated that an inverse quartic function can give a much better fit than an inverse parabola in almost all FLC test samples showing asymmetric strain distributions. Using a quartic fit creates more reliable FLCs.

COMPUTATIONS OF NATURAL CONVECTION FLOW WITHIN A SQUARE CAVITY BY HERMITE STREAM FUNCTION METHOD (Hermite 유동함수법에 의한 정사각형 공동 내부의 자연대류 유동계산)

  • Kim, J.W.
    • Journal of computational fluids engineering
    • /
    • v.14 no.4
    • /
    • pp.67-77
    • /
    • 2009
  • This paper is a continuation of a recent development on the Hermite-based divergence-free element method and deals with a non-isothermal fluid flow driven by the buoyancy force in a square cavity with temperature difference across the two sides. Two Hermite functions are considered for numerical computations in this paper. One is a cubic function and the other is a quartic function. The degrees-of-freedom of the cubic Hermite function are stream function and its first and second derivatives for the velocity field, and temperature and its first derivatives for the temperature field. The degrees-of-freedom of the quartic Hermite function include two second derivatives and one cross derivative of the stream function in addition to the degrees-of-freedom of the cubic stream function. This paper presents a brief review on the Hermite based divergence-free basis functions and its finite element formulations for the buoyancy driven flow. The present algorithm does not employ any upwinding or a stabilization term. However, numerical values and contour graphs for major flow variables showed good agreements with those by De Vahl Davis[6].

Curved-quartic-function elements with end-springs in series for direct analysis of steel frames

  • Liu, Si-Wei;Chan, Jake Lok Yan;Bai, Rui;Chan, Siu-Lai
    • Steel and Composite Structures
    • /
    • v.29 no.5
    • /
    • pp.623-633
    • /
    • 2018
  • A robust element is essential for successful design of steel frames with Direct analysis (DA) method. To this end, an innovative and efficient curved-quartic-function (CQF) beam-column element using the fourth-order polynomial shape function with end-springs in series is proposed for practical applications of DA. The member initial imperfection is explicitly integrated into the element formulation, and, therefore, the P-${\delta}$ effect can be directly captured in the analysis. The series of zero-length springs are placed at the element ends to model the effects of semi-rigid joints and material yielding. One-element-per-member model is adopted for design bringing considerable savings in computer expense. The incremental secant stiffness method allowing for large deflections is used to describe the kinematic motion. Finally, several problems are studied in this paper for examining and validating the accuracy of the present formulations. The proposed element is believed to make DA simpler to use than existing elements, which is essential for its successful and widespread adoption by engineers.

4차 고다드 알고리즘의 몇 가지 수렴 성질: 2. 평균성능함수의 기하

  • 최진호;배진수;송익호;박래홍;이민수
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.9
    • /
    • pp.2355-2361
    • /
    • 1996
  • Convergence analysis on Godard's quartic(GQ) algorithm used for blind equalization is accomplished in this paper. First, we explain the local behavior of the GQ algoithm around the global minimum point of the average performance function. Then we consider the geometry of the average performance function. The main result is that a good initial parameter vector of the GQ algorithm can be chosen based on the information of the geometry of the average performance function.

  • PDF

The fiber element technique for analysis of concrete-filled steel tubes under cyclic loads

  • Golafshani, A.A.;Aval, S.B.B.;Saadeghvaziri, M.A.
    • Structural Engineering and Mechanics
    • /
    • v.14 no.2
    • /
    • pp.119-133
    • /
    • 2002
  • A beam-column fiber element for the large displacement, nonlinear inelastic analysis of Concrete-Filled Steel Tubes (CFT) is implemented. The method of description is Total Lagrangian formulation. An 8 degree of freedom (DOF) element with three nodes, which has 3 DOF per end node and 2 DOF on the middle node, has been chosen. The quadratic Lagrangian shape functions for axial deformation and the quartic Hermitian shape function for the transverse deformation are used. It is assumed that the perfect bond is maintained between steel shell and concrete core. The constitutive models employed for concrete and steel are based on the results of a recent study and include the confinement and biaxial effects. The model is implemented to analyze several CFT columns under constant and non-proportional fluctuating concentric axial load and cyclic lateral load. Good agreement has been found between experimental results and theoretical analysis.

A Performance Study of First-order Shear Deformable shell Element Based on Loop Subdivision Surface (루프서브디비전 곡면을 이용한 일차전단 변형 쉘요소의 성능에 관한 연구)

  • 김형길;조맹효
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.261-268
    • /
    • 2003
  • A first order shear deformable Loop-subdivision triangular element which can handle transverse shear deformation of moderately thick shell is developed. The developed element is general since it includes the effect of transverse shear deformation and has standard six degrees of freedom per node.(three translations and three rotations) The quartic box-spline function is employed as interpolation basis function. Numerical examples for the benchmark problems are analyzed in order to assess the performance of the newly developed subdivision shell element. Both in the uniform and in the distorted mesh configurations.

  • PDF