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FUNDAMENTAL UNITS AND REGULATORS OF

AN INFINITE FAMILY OF CYCLIC QUARTIC

FUNCTION FIELDS

Jungyun Lee and Yoonjin Lee

Abstract. We explicitly determine fundamental units and regulators of
an infinite family of cyclic quartic function fields Lh of unit rank 3 with
a parameter h in a polynomial ring Fq[t], where Fq is the finite field of
order q with characteristic not equal to 2. This result resolves the second
part of Lehmer’s project for the function field case.

1. Introduction

Lecacheux [9, 10] and Darmon [3] obtain a family of cyclic quintic fields over
Q, and Washington [22] obtains a family of cyclic quartic fields over Q by using
coverings of modular curves. Lehmer’s project [13, 14] consists of two parts;
one is finding families of cyclic extension fields, and the other is computing
a system of fundamental units of the families. Washington [17, 22] computes
a system of fundamental units and the regulators of cyclic quartic fields and
cyclic quintic fields, which is the second part of Lehmer’s project.

We are interested in working on the second part of Lehmer’s project for
the families of function fields which are analogous to the type of the number
field families produced by using modular curves given in [22]: that is, finding a
system of fundamental units and regulators of families of cyclic extension fields
over the rational function field Fq(t). In [11], we obtain the results for the
quintic extension case. In this paper, we work on the quartic extension case;
that is, we explicitly determine a system of fundamental units and regulators
of the following infinite family of quartic function fields {Lh} over Fq(t).

Received January 4, 2016.
2010 Mathematics Subject Classification. 11R29, 11R58.
Key words and phrases. regulator, function field, quintic extension.
The authors were supported by Basic Science Research Program through the National

Research Foundation of Korea(NRF) funded by the Ministry of Education(2009-0093827),
the first named author was also supported by the National Research Foundation of Ko-
rea(NRF) grant founded by the Korea government(2011-0023688), and the second named
author by the National Research Foundation of Korea(NRF) grant founded by the Korea
government(MEST)(2014-002731).

c©2017 Korean Mathematical Society

417



418 J. LEE AND Y. LEE

Let k = Fq(t) be a rational function field and Lh = k(αh) be a quartic
extension over k generated by a root αh of

Fh(x) = x4 − h2x3 − (h3 + 2h2 + 4h+ 2)x2 − h2x+ 1,

where h is a monic polynomial in Fq[t] such that h(h + 2)(h2 + 4) is square
free in Fq[t]. Then we show that Lh = k(αh) is a real cyclic function field of
unit rank three, and we explicitly determine a system of fundamental units and
regulators of Lh as the following main theorem.

Theorem 1.1. Let h be a monic polynomial in Fq[t] such that h(h+2)(h2+4)
is square free in Fq[t]. The regulator R(Lh) of Lh is explicitly given by

R(Lh) = 10(deg h)3.

Furthermore, a system of the fundamental units of Lh are {αh, σ(αh), ǫh} with

the following unit group of Lh

U(Lh) = F
∗
q × 〈αh, σ(αh), ǫh〉,

where ǫh = h+
√
h2 + 4 and σ is a generator of the Galois group Gal(Lh/k).

2. Preliminary

Let Lh and Fh(x) be the same as given in Section 1. Then all four roots
αh,1, αh,2, αh,3, αh,4 of Fh(x) are as follows:

h2 + (h+ 2)
√
h2 + 4±

√

2h(h+ 2)(h2 + 4) + 2h2(h+ 2)
√
h2 + 4

4
,

h2 − (h+ 2)
√
h2 + 4±

√

2h(h+ 2)(h2 + 4)− 2h2(h+ 2)
√
h2 + 4

4
.

Let Kh = k(
√
h2 + 4). Then Kh is a unique quadratic subfield of Lh and the

fundamental unit ǫh of Kh is h +
√
h2 + 4. It is known that Lh is a cyclic

extension over k with

Gal(Lh/k) = 〈σ〉, and Gal(Lh/Kh) = 〈σ2〉,
where σ is defined by

σ(αh) = (h+
1

h+ 2
)− (h3 + h2 + 3h+

3

h+ 2
)αh

+ (−h2 + h− 2 +
3

h+ 2
)α2

h + (1− 1

h+ 2
)α3

h.

We have Lagrange resolvent r1 = αh,1 + αh,2i − αh,3 − αh,4i for Lh, where
i2 = −1, and we find

R1 = r41 = h2(h+ 2)2(h2 + 4)(h− 2i)2 ∈ Fq(i)(t).
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We notice that the discriminant DKh
of Kh is h2 + 4 and primes in k dividing

h and h + 2 are ramified in Lh; hence, according to conductor-discriminant

formula, it follows that the discriminant DLh
of Lh over k is given by

DLh
= h2(h+ 2)2(h2 + 4)3.

Proposition 2.1. The infinite prime ℘∞ of k splits completely in Lh; so Lh

has unit rank 3, and Lh is a real function field.

Proof. Let P∞ be an infinite prime of k( 4
√R1) lying over ℘∞ ∈ k and ℘̃∞

(resp. P̃∞) be the infinite prime of k(i) (resp. k(i, 4
√R1)) lying over ℘∞ (resp.

P∞). Then we have

k(i)℘̃∞
= Fq(i)((t

−1)) and k(i, 4
√

R1)P̃∞

= Fq(i,
4
√

R1)((t
−1)).

If we express R1 = h2(h+ 2)2(h2 + 4)(h− 2i)2 in Fq(i)((t
−1)), we have

R1 = a8dt
8d + lower terms on t,

where h =
∑d

i=0 ait
i for ai ∈ Fq, (i = 0, 1, . . . , d − 1) and ad ∈ F

∗
q . Thus we

have
4
√

R1 ∈ Fq(i)((t
−1))

and
k(i, 4

√

R1)P̃∞

= Fq(i,
4
√

R1)((t
−1)) = Fq(i)((t

−1)) = k(i)℘̃∞
;

this implies that

k( 4
√

R1)P∞
= k℘∞

,

which completes the proof. �

The infinite prime ℘∞ of k splits completely in Lh; so we have k ⊆ Lh ⊆
k∞ = Fq((t

−1)), where k∞ is the completion of k at ℘∞. For a nonzero element
a =

∑∞
i=−m cit

−i ∈ k∞ with m ∈ Z, ci ∈ Fq(i ≥ −m) and c−m 6= 0, we define

deg a = m.

Let U(Lh) (resp. U(Kh)) be the unit group of the maximal order of Lh

(resp. Kh). Let

U(Lh/Kh) := { ǫ ∈ U(Lh) | NLh/Kh
(ǫ) = ǫ · σ2(ǫ) ∈ F

∗
q}.

It is known [4] that there is ηh ∈ Lh with

U(Lh/Kh) = F
∗
q × 〈ηh, σ(ηh)〉,

and we call ηh a relative fundamental unit of Lh over Kh.
Let R(Lh) (resp. R(Kh)) be the regulator of Lh (resp. the regulator of Kh)

and for ǫi (i = 1, 2, 3) ∈ U(Lh),

R(ǫ1, ǫ2, ǫ3) := det





deg ǫ1 deg ǫ2 deg σ(ǫ3)
deg σ(ǫ1) deg σ(ǫ2) deg σ2(ǫ3)
deg σ2(ǫ1) deg σ2(ǫ2) deg σ3(ǫ3)



 .

Let DLh/Kh
(resp. DLh/k) denote the discriminant of Lh over Kh (resp. Lh

over k).
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3. Determination of relative fundamental units

In this section, we show that the relative fundamental unit ηh of Lh over Kh

is equal to a root αh of

Fh(x) = x4 − h2x3 − (h3 + 2h2 + 4h+ 2)x2 − h2x+ 1

up to constant in F
∗
q . It is known [4] that

QLh
:= [U(Lh) : U(Kh)U(Lh/Kh)] ∈ {1, 2}

and

R(ǫKh
, ηh, σ(ηh)) = QLh

R(Lh).

We note that for α ∈ U(Lh/Kh) and β ∈ U(Kh), we have

R(β, α, σ(α)) = 2 deg(β)
(

(degα)2 + (deg σ(α))2
)

.

Thus, for determination of R(Lh) and a relative unit ηh, we need a lower bound
and an upper bound of (deg ηh)

2 + deg(σ(ηh))
2.

Proposition 3.1. Let ηh ∈ Lh be such that

U(Lh/Kh) = F
∗
q × 〈ηh, σ(ηh)〉.

Then we have

4.5(deg h)2 ≤ (deg ηh)
2 + deg(σ(ηh))

2 ≤ 5(deg h)2.

Proof. Since αh ∈ U(Lh/Kh), we have for integers a, b

αh = ηahσ(ηh)
b

and

(degαh)
2 + (deg σ(αh))

2 = (a2 + b2)
(

(deg ηh)
2 + deg(σ(ηh))

2
)

.

We note that

αh = h2 + h+ 1 +
2

h
+ · · ·

and

σ(αh) = −h− 1− 1

h
+

2

h3
+ · · · .

Thus, we have

degαh = 2deg h and deg σ(αh) = deg h.

Finally, we obtain that

(deg ηh)
2 + deg(σ(ηh))

2 ≤ (degαh)
2 + (deg σ(αh))

2 = 5(deg h)2.

Now, we note that

DLh
= NKh/k(DLh/Kh

)D2
Kh

= h2(h+ 2)2(h2 + 4)3.

Since DKh
= h2 + 4, we have that

NKh/k(DLh/Kh
) = h2(h+ 2)2(h2 + 4).
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Moreover, we have

DLh/Kh
| (ηh − σ2(ηh))

2

and

NKh/k(DLh/Kh
) | NKh/k(ηh − σ2(ηh))

2.

Thus we have

h2(h+ 2)2(h2 + 4) | (ηh − σ2(ηh))
2(σ(ηh)− σ3(ηh))

2.

We observe that for c1, c2 ∈ F
∗
q , σ

2(ηh) = c1/ηh, σ3(ηh) = c2/σ(ηh)

deg (ηh − c1/ηh) = | deg ηh|, and deg (σ(ηh)− c2/σ(ηh)) = | deg σ(ηh)|;

thus, we have

deg h2(h+ 2)2(h2 + 4) ≤ 2| deg ηh|+ 2| deg σ(ηh)|

≤ 2
√
2
(

(deg ηh)
2 + (deg σ(ηh))

2
)

1
2

,

so that we get

(

deg h2(h+ 2)2(h2 + 4)
)2

≤ 8 ·
(

(deg ηh)
2 + (deg σ(ηh))

2
)

.

Consequently, we obtain that

4.5(deg h)2 ≤ (deg ηh)
2 + (deg σ(ηh))

2.
�

Theorem 3.2. A root αh of Fh(x) is a relative fundamental unit of Lh over

Kh up to constant in F
∗
q .

Proof. Since αh ∈ U(Lh/Kh), we have for integers a, b

αh = ηahσ(ηh)
b

and

(1) (degαh)
2 + (deg σ(αh))

2 = (a2 + b2)
(

(deg ηh)
2 + deg(σ(ηh))

2
)

.

From (1) and Proposition 3.1, it follows that

5(deg h)2 ≥ 4.5(a2 + b2)(deg h)2.

Thus, we have

a2 + b2 = 1;

this implies that αh is η±1
h or σ(ηh)

±1, which completes the proof. �
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4. Proof of the main result

In this section, we first compute QLh
, and we then complete the proof of

Theorem 1.1. We need the following two lemmas. Lemma 4.1 is a criterion for
determining whether QLh

is 1 or not. A similar criterion in the number field
case is given in [4].

Lemma 4.1. Let U(Kh) = F
∗
q × 〈ǫh〉 and U(Lh/Kh) = F

∗
q × 〈ηh, σ(ηh)〉. If

cǫhη
1−σ
h is not a square in U(Lh) for any c ∈ F

∗
q, then

QLh
= 1.

Proof. Suppose that QLh
6= 1. Then we can take u ∈ U(Lh)−U(Kh)U(Lh/Kh).

As u1+σ2 ∈ U(Kh), we have

u1+σ2

= c1ǫ
2λ+1
h or u1+σ2

= c2ǫ
2λ
h (c1, c2 ∈ F

∗
q).

If u1+σ2

= c2ǫ
2λ
h (c2 ∈ F

∗
q), then u

ǫλ
h

(

u

ǫλ
h

)σ2

∈ F
∗
q which implies that u ∈

U(Lh/Kh)U(Lh/Kh). Thus we have u1+σ2

= c1ǫ
2λ+1
h (c1 ∈ F

∗
q); so we get

c1ǫh =
u

ǫλh

( u

ǫλh

)σ2

.

If we let u1 = u

ǫλ
h

∈ U(L), then we have

c1ǫh = u1+σ2

1 (c1 ∈ F
∗
q).

Since u1+σ
1 ∈ U(Lh/Kh), we have

(2) u1+σ
1 = c3η

A
h σ(ηh)

B (c3 ∈ F
∗
q and A,B ∈ Z).

We note that if A and B have the same parity (that is, both are even or odd),
then

ηAh σ(ηh)
B = c4

(

η
A+B

2

h σ(ηh)
−A+B

2

)1+σ

(c4 ∈ F
∗
q);

therefore, we get
(

u1/(η
A+B

2

h σ(ηh)
−A+B

2 )
)1+σ

∈ F
∗
q ;

so we have u1 ∈ U(Lh/Kh)U(Lh/Kh), which is a contradiction. This shows
that A and B have not the same parity. In other words, A − 1 and B have
same parity. Thus (2) implies that

(

u1/(η
A+B−1

2

h σ(ηh)
−A+B+1

2 )
)1+σ

= c3ηh (c3 ∈ F
∗
q).

Since (η
A+B−1

2

h σ(ηh)
−A+B+1

2 )1+σ2 ∈ F
∗
q , by letting

u2 :=
u1

η
A+B−1

2

h σ(ηh)
−A+B+1

2

,
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we have

(3) u1+σ
2 = c3ηh and u1+σ2

2 = c4ǫh (c3, c4 ∈ F
∗
q);

therefore,

c5ǫhη
1−σ
h = u2

2 for u2 ∈ U(Lh) and c5 ∈ F
∗
q ,

which completes the proof. �

We first show that cǫhη
1−σ
h is not square in U(Lm) for any c ∈ F

∗
q . Then by

Lemma 4.1 we get

QLh
= 1.

It then follows that R(Lh) = 10(deg h)3 and

U(Lh) = F
∗
q × 〈αh, σ(αh), ǫh〉,

where ǫh = h+
√
h2 + 4.

It is thus enough to show that cǫhη
1−σ
h is not square in U(Lh) for any

c ∈ F
∗
q . To determine whether cǫhη

1−σ
h is a square in U(Lh) or not, we need

the following lemma.

Lemma 4.2. Let E be a quadratic extension of F . If τ ∈ E is square in

E, then NE/F (τ), TrE/F (τ) + 2
√

NE/F (τ) and TrE/F (τ) − 2
√

NE/F (τ) are

square in F .

Proof. Using the following formulas in Proposition 3.1 in [15],

√
τ =

τ +
√

NE/F (τ)
√

TrE/F (τ) + 2
√

NE/F (τ)
and

√
τ =

τ −
√

NE/F (τ)
√

TrE/F (τ) − 2
√

NE/F (τ)
,

the result follows immediately. �

Proof of Theorem 1.1. In Theorem 3.2, we find that

ηh = cαh (c ∈ F
∗
q).

Let τh = cǫhαh/σ(αh) (c ∈ F
∗
q). We note that

NLh/Kh
(cτh) = c2ǫ2h,

T rLh/Kh
(τh) + 2

√

NLh/Kh
(τh) = cǫh

(

− 2h− h2 − h3

2
− 1

2
h(h+ 2)

√

h2 + 4
)

,

and

TrLh/Kh
(τh)−2

√

NLh/Kh
(τh) = cǫh

(

−4−2h−h2− h3

2
− 1

2
h(h+2)

√

h2 + 4
)

.

Let

δh,1 := cǫh

(

− 2h− h2 − h3

2
− 1

2
h(h+ 2)

√

h2 + 4
)

,
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and

δh,2 := cǫh

(

− 4− 2h− h2 − h3

2
− 1

2
h(h+ 2)

√

h2 + 4
)

.

Moreover, if δh,1 ∈ Kh is square in Kh, then NKh/k(δh,2) and TrKh/k(δh,1)+

2
√

NKh/k(δh,1) and TrKh/k(δh,1) − 2
√

NKh/k(δh,1) are square in k. We note
that

NKh/k(δh,1) = −c2(4h4 + 16h3 + 32h2 + 64h+ 64),

which is not square in k for any c ∈ F
∗
q .

Moreover, if δh,2 ∈ Kh is square in Kh, then NKh/k(δh,2) and TrKh/k(δh,2)+

2
√

NKh/k(δh,2) and TrKh/k(δh,2) − 2
√

NKh/k(δh,2) are square in k. We note
that

(4) NKh/k(δh,2) = −4c2h4.

If −1 is not square in Ok/q, then (4) is not square in k for any c ∈ F
∗
q . On the

other hand, if −1 is square in Ok/q witha2 = −1 in Ok/q, then we have

TrKh/k(δh,2) + 2
√

NKh/k(δh,2) = c(2a2h4 + 4a2h3 + (8a2 + 4a)h2 + 8a2h)

and

TrKh/k(δh,2)− 2
√

NKm/k(δh,2) = c(2a2h4 + 4a2h3 + (8a2 − 4a)h2 + 8a2h);

both are not square in k for any c ∈ F
∗
q .

Hence, from Lemma 4.2, it follows that δh,1 and δh,2 are not square in Kh

and τh is not square in Lh. This completes the proof. �

5. Infinitely many family of quartic function fields

In this section, we show that there are infinitely many primes q such that
(h(t)2 + 4)(h(t) + 2)h(t) is square free in Fq[t], where h(t) is a given monic
polynomial in Z[t]. Consequently, Theorem 1.1 holds for infinitely many family
of quartic function fields.

Lemma 5.1. For a field K, a nonzero polynomial f(x) ∈ K[x] is square free

if and only if f(x) is relatively prime to f ′(x) in K[x].

Proof. Let f(x) be a nonzero polynomial in K[x]. If f(x) is square free, then
f(x) and f ′(x) have no common factors in K[x]; thus they are relatively prime.
For the converse, if we assume that f(x) is not square free, then f(x) and f ′(x)
have some common factor in K[x]; so f(x) and f ′(x) are not relatively prime
in K[x]. �

Lemma 5.2. (1) Let K be a field and f(x) ∈ K[x] be a square free poly-

nomial. Then for g(x) ∈ K[x], if f(g(x)) is relatively prime to g′(x),
then f(g(x)) is square free in K[x].

(2) For f(x), g(x) ∈ Z[x], if f(g(x)) is square free in Q[x], then f(g(x)) ∈
Fq[x] is square free for every prime q, where f̄ (resp. ḡ) denotes the

reduction of coefficients of f (resp. g) modulo q.
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Proof. (1) It is sufficient to show that f(g(x)) and f ′(g(x))g′(x) are relatively
prime by Lemma 5.1. Since f(x) is square free in K[x], f(x) and f ′(x) are
relatively prime in K[x]; so f(g(x)) and f ′(g(x)) are also relatively prime in
K[x]. Thus, if f(g(x)) and g′(x) are relatively prime by our assumption, then
f(g(x)) is square free in K[x].

(2) If f(g(x)) is square free in Q[x], f(g(x)) and g′(x) are relatively prime
in Q[x] by Lemma 5.1; hence, there exist h1(x) and h2(x) in Q[x] such that

f(g(x))h1(x) + g′(x)h2(x) = 1.

Thus we have

f̄(ḡ(x))h̄1(x) + ḡ′(x)h̄2(x) = 1;

equivalently, f̄(ḡ(x)) and ḡ′(x) are relatively prime. It thus follows that f(g(x))
is square free in Fq[x] for every prime q from the part (1). �

Theorem 5.3. Let h(t) be of the type tk + c ∈ Fq[t] with (c2 +4)(c+2)c ∈ F
∗
q.

Then (h(t)2+4)(h(t)+2)h(t) is square free in Fq[t] for any power q of a prime

except q = 2 or q dividing k.

Proof. From Lemma 5.2(1), we obtain the result. �
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