• Title/Summary/Keyword: quarter-symmetric semi-metric connection

Search Result 8, Processing Time 0.018 seconds

ON SEMI-INVARIANT SUBMANIFOLDS OF A NEARLY KENMOTSU MANIFOLD WITH A QUARTER SYMMETRIC NON-METRIC CONNECTION

  • Ahmad, Mobin;Jun, Jae-Bok
    • The Pure and Applied Mathematics
    • /
    • v.18 no.1
    • /
    • pp.1-11
    • /
    • 2011
  • We define a quarter symmetric non-metric connection in a nearly Ken-motsu manifold and we study semi-invariant submanifolds of a nearly Kenmotsu manifold endowed with a quarter symmetric non-metric connection. Moreover, we discuss the integrability of the distributions on semi-invariant submanifolds of a nearly Kenmotsu manifold with a quarter symmetric non-metric connection.

ON SOME PROPERTIES OF SEMI-INVARIANT SUBMANIFOLDS OF A NEARLY TRANS-SASAKIAN MANIFOLD ADMITTING A QUARTER-SYMMETRIC NON-METRIC CONNECTION

  • Ahmad, Mobin;Jun, Jae-Bok;Siddiqi, Mohd Danish
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.25 no.1
    • /
    • pp.73-90
    • /
    • 2012
  • We define a quarter-symmetric non-metric connection in a nearly trans-Sasakian manifold and we consider semi-invariant submanifolds of a nearly trans-Sasakian manifold endowed with a quarter-symmetric non-metric connection. Moreover, we also obtain integrability conditions of the distributions on semi-invariant submanifolds.

INVARIANT AND SCREEN SEMI-INVARIANT LIGHTLIKE SUBMANIFOLDS OF A METALLIC SEMI-RIEMANNIAN MANIFOLD WITH A QUARTER SYMMETRIC NON-METRIC CONNECTION

  • Jasleen Kaur;Rajinder Kaur
    • Korean Journal of Mathematics
    • /
    • v.32 no.3
    • /
    • pp.407-424
    • /
    • 2024
  • The present work aims to introduce the geometry of invariant and screen semi-invariant lightlike submanifolds of a metallic semi-Riemannian manifold equipped with a quarter symmetric non-metric connection. The study establishes the characterization of integrability and parallelism of the distributions inherent in these submanifolds. Additionally, the conditions for distributions defining totally geodesic foliations on the invariant and screen semi-invariant lightlike submanifolds of metallic semi-Riemannian manifold are specified.

LIGHTLIKE HYPERSURFACES OF AN INDEFINITE KAEHLER MANIFOLD WITH A NON-METRIC 𝜙-SYMMETRIC CONNECTION

  • Jin, Dae Ho
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.2
    • /
    • pp.619-632
    • /
    • 2017
  • We define a new connection on semi-Riemannian manifold, which is called a non-metric ${\phi}$-symmetric connection. Semi-symmetric non-metric connection and quarter-symmetric non-metric connection are two impotent examples of this connection. The purpose of this paper is to study the geometry of lightlike hypersurfaces of an indefinite Kaehler manifold with a non-metric ${\phi}$-symmetric connection.

SOME NOTES ON LP-SASAKIAN MANIFOLDS WITH GENERALIZED SYMMETRIC METRIC CONNECTION

  • Bahadir, Oguzhan;Chaubey, Sudhakar K.
    • Honam Mathematical Journal
    • /
    • v.42 no.3
    • /
    • pp.461-476
    • /
    • 2020
  • The present study initially identify the generalized symmetric connections of type (α, β), which can be regarded as more generalized forms of quarter and semi-symmetric connections. The quarter and semi-symmetric connections are obtained respectively when (α, β) = (1, 0) and (α, β) = (0, 1). Taking that into account, a new generalized symmetric metric connection is attained on Lorentzian para-Sasakian manifolds. In compliance with this connection, some results are obtained through calculation of tensors belonging to Lorentzian para-Sasakian manifold involving curvature tensor, Ricci tensor and Ricci semi-symmetric manifolds. Finally, we consider CR-submanifolds admitting a generalized symmetric metric connection and prove many interesting results.

LIGHTLIKE HYPERSURFACES OF AN INDEFINITE KAEHLER MANIFOLD WITH A SYMMETRIC METRIC CONNECTION OF TYPE (ℓ, m)

  • Jin, Dae Ho
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.4
    • /
    • pp.1171-1184
    • /
    • 2016
  • We define a new connection on semi-Riemannian manifolds, which is called a symmetric connection of type (${\ell}$, m). Semi-symmetric connection and quarter-symmetric connection are two examples of this connection such that $({\ell},m)=(1,0)$ and $({\ell},m)=(0,1)$ respectively. In this paper, we study lightlike hypersurfaces of an indefinite Kaehler manifold endowed with a symmetric metric connection of type (${\ell}$, m).

ON ALMOST r-PARACONTACT RIEMANNIAN MANIFOLD WITH A CERTAIN CONNECTION

  • Ahmad, Mobin;Haseeb, Abdul;Jun, Jae-Bok;Rahman, Shamsur
    • Communications of the Korean Mathematical Society
    • /
    • v.25 no.2
    • /
    • pp.235-243
    • /
    • 2010
  • In a Riemannian manifold, the existence of a new connection is proved. In particular cases, this connection reduces to several symmetric, semi-symmetric and quarter symmetric connections, even some of them are not introduced so far. So, in this paper, we define a quarter symmetric semi-metric connection in an almost r-paracontact Riemannian manifold and consider invariant, non-invariant and anti-invariant hypersurfaces of an almost r-paracontact Riemannian manifold with that connection.

LIGHTLIKE HYPERSURFACES OF AN INDEFINITE GENERALIZED SASAKIAN SPACE FORM WITH A SYMMETRIC METRIC CONNECTION OF TYPE (ℓ, m)

  • Jin, Dae Ho
    • Communications of the Korean Mathematical Society
    • /
    • v.31 no.3
    • /
    • pp.613-624
    • /
    • 2016
  • We define a new connection on a semi-Riemannian manifold. Its notion contains two well known notions; (1) semi-symmetric connection and (2) quarter-symmetric connection. In this paper, we study the geometry of lightlike hypersurfaces of an indefinite generalized Sasakian space form with a symmetric metric connection of type (${\ell}$, m).