• Title/Summary/Keyword: quarter car model

Search Result 59, Processing Time 0.022 seconds

A Study on the Control of Vehicle Suspension by using Electro-Rheological Fluid via FLC Technique (FLC를 이용한 전기유전유체를 사용한 차량현가장치의 제어에 관한 연구)

  • Kim, Haak-Kyun;Heo, Hoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.203-208
    • /
    • 1996
  • This paper consider the control for the vehicle suspension system using electro-rheological damper. The study is performed by using of FLC(Fuzzy Logic Controller). The model used in the simulation is quarter car and the road disturbance is regarded as white noise random process with zero mean. Proposed control technique shows good agreement compared with the result from the conventional on-off/bang-bang type control technique.

  • PDF

Active Suspension using Disturbance Accommodating Sliding Mode Control (능동 현가 장치의 외란 적응 슬라이딩 모드 제어)

  • 김종래;김진호
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.3
    • /
    • pp.275-280
    • /
    • 1999
  • This paper presents a disturbance accommodating sliding mode control for a quarter-car active suspension using an electro-hydraulic actuator. The electro-hydraulic actuator model is nonlinear and uncertain. The hardware constrains on the actuator prevent high gain in a sliding mode control, which deteriorates the force tracking performance. DAC(Disturbance Accommodating Control) is combined with the sliding mode control to improve the tracking performance. DAC observer estimates the pressure due to the actuator uncertainty. The additional control is designed to compensate the estimated pressure. Simulation results show the improved tracking performance with the Proposed control methods.

  • PDF

Control Algorithms of Active Suspension Systems for Ride Comfort Improvement (승차감 향상을 위한 액티브서스펜션의 제어알고리즘)

  • Tak, Tae-Oh
    • Journal of Industrial Technology
    • /
    • v.12
    • /
    • pp.61-67
    • /
    • 1992
  • Two control algorithms of active suspension system for improving ride quality are described and their effectiveness is assessed using a quarter car model. Optimal control approach demonstrates great flexibility to meet various running conditions of a vehicle. However, in order to fully utilize the power of optimal control apporach, accurate estimation of the state variables is essential. Simple, yet effective sky-hook algorithm seems to be well suited for real application because of its much relaxed requirements on sensing the stste variables and relative easiness to implment.

  • PDF

Control of Active Suspension System Considering Wheel-Hop (차륜 진동을 고려한 능동 현가계 제어)

  • 이동락;한기봉;이시복
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.420-424
    • /
    • 1994
  • In this paper, an active suspension system considering the wheel hop is studied for a quarter car model. A LQ controller controls an active suspension system in which a vibration absorber is attached to the wheel axis. The vibration absorber is adopted to reduce the vibration near the natural frequency of the unsprung mass, and the LQ controller is used to control the vibration near the natural frequency of the sprung mass. The perfomance of the control system considering the wheel hop is compared with that of a LQ control system.

  • PDF

Validation of Driver Steering Model with Vehicle Test (실차 실험을 통한 운전자 조향 모델의 검증)

  • Chung Taeyoung;Lee Gunbok;Yi Kyongsu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.1
    • /
    • pp.76-82
    • /
    • 2005
  • In this paper, validation of Driver Steering Model has been conducted. The comparison between the simulation model and vehicle test results shows that the model is very feasible for describing combined human driver and actual vehicle dynamic behaviors. The 3D vehicle model is consisted of 6-DOF sprung mass and 4-quarter car model for vehicle body dynamics. Powertrain model including differential gear and Pacejka tire model are applied. The driver steering model is also validated with vehicle test result. The driver steering model is based on angle and displacement error from the desired path, recognized by driver.

Control Performance Investigation of MR Fluid Damper using Herschel-Bulkley Shear Model (Herschel-Bulkley 모델을 이용한 MR 댐퍼 승용차의 제어 성능 고찰)

  • 이덕영;황우석
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.323-328
    • /
    • 2002
  • The control performance of a vehicle installed with an MR(magnetorheological) fluid-based damper is investigated on the basis of Herschel-Bulkley shear model. Generally, most of MR fluid damper has been analyzed based on a simple Bingham-plastic shear model. However, the Bingham-plastic shear model can not well describe the behavior of the damper on the condition of high velocity and high current field input. Therefore, in this study, the Herschel-Bulkley shear model in which the constant post-yield plastic viscosity in Bingham model is replaced with a power law model dependent on shear rate is used to assess control performance of a vehicle with MR fluid damper suspension system. This study deals with a two-degree-of-freedom suspension using the MR fluid damper for a quarter car model. The response for the bump input to identify the fastness of MR fluid damper embedded skyhook controller and requested magnetic field are investigated.

  • PDF

Control simulation of MR damper for a cruise bus including the virtual dynamic damper (가상 동흡진기를 고려한 우등버스용 MR댐퍼의 제어 시뮬레이션)

  • Park, S.J.;Sohn, J.H.
    • Journal of Power System Engineering
    • /
    • v.15 no.2
    • /
    • pp.19-24
    • /
    • 2011
  • In this study, a control method of MR(magneto-rheological) damper for a cruise bus is investigated. A virtual dynamic damper and a sky-hook algorithm are employed to control the damping characteristics of MR damper. Coefficients for a virtual dynamic damper are determined through the parameter identification. A quarter car model of a cruise bus is established by using ADAMS/Car program for the computer simulation. Sine wave excitation and random excitation are used to compare the controlled MR damper with the passive damper. From the simulation results, the performance of MR damper with a virtual dynamic damper is better than that of the passive damper.

NEW MODELING AND CONTROL OF AN ASYMMETRIC HYDRAULIC ACTIVE SUSPENSION SYSTEM

  • Kim, Wanil;Sangchul Won
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.490-495
    • /
    • 1998
  • In this paper an asymmetric hydraulic actuator which consists of single acting cylinder and servo valve is modeled for a quarter car active suspension system. This model regards the force as an internal state rather than a control input. The control input of the model is the sum of oil flows that pass through the valve's orifices. The resulting dynamic equation in the state space ap-pears a feedback connection of a nominal linear time in-variant term with a nonlinear bounded uncertain block. Since this model makes it possible to eliminate the force control phase, analysis and controller design are made straightforward and simple. Well known LQR method is then applied. Simulation and test rig experiment show the effectiveness of this approach in modeling and control.

  • PDF

Nonlinear Control of Active Suspensions using RBF Network with Asymmetric Hydraulic Cylinder (비대칭형 유압 실린더를 사용한 능동 현가 시스템의 RBF 신경회로망을 이용한 제어기 설계)

  • Jang, Yu-Jin;Kim, Sang-U
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.5
    • /
    • pp.593-600
    • /
    • 1999
  • This paper suggests a suboptimal control scheme of an active suspension system with an asymmetric hydraulic cylinder. In this paper a quarter car model including a nonlinear actuator dynamics is used. A feedback linearization technique is applied to obtain a linear model. An LQ regulator is designed with the linear model to keep robustness against sprung mass variation. The gain of the LQ regulator which depends on the damping coefficient of the damper is calculated by using an RBF neural network for real time application. The improvement achieved with our design is illustrated through comparative simulations.

  • PDF

Deduction of a Simplified Model for the Hydraulic Actuator for a Low-band Type Suspension System (능동제어식 현가계의 유압 구동장치에 대한 단순화 모델 유도)

  • 김동윤;홍예선;박영필
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.4
    • /
    • pp.27-38
    • /
    • 1994
  • In this paper, a simplified model of a hydraulic actuator system for a low-band type active suspension system is derived. To reduce the order of model, time constants of each chamber in hydraulic system are neglected except that of an accumulator. And the dynamics of a spool in the pressure control valve is regarded as a first-order system. The step response and the frequency response of the simplified second-order simulation model exhibit a good agreement with those of the actual system as well as those of the tenth-order simulation model. It is possible to simplify the tenth-order model to the second-order one. The low-band type active suspension model is built up by combining of a quarter car model test rig to testify the validity of the simplified model. The experimental results of suspension characteristics show that the simplified second-order hydraulic actuator model is reasonable to describe the dynamics of the actual hydraulic actuator system for a low-band type active suspension system.

  • PDF