• 제목/요약/키워드: quantum noise

검색결과 141건 처리시간 0.022초

CONVOLUTIONS OF WHITE NOISE OPERATORS

  • Ji, Un-Cig;Kim, Young-Yi
    • 대한수학회보
    • /
    • 제48권5호
    • /
    • pp.1003-1014
    • /
    • 2011
  • Motivated by the convolution product of white noise functionals, we introduce a new notion of convolution products of white noise operators. Then we study several interesting relations between the convolution products and the quantum generalized Fourier-Mehler transforms, and study a quantum-classical correspondence.

Evolutionary Neural Network based on Quantum Elephant Herding Algorithm for Modulation Recognition in Impulse Noise

  • Gao, Hongyuan;Wang, Shihao;Su, Yumeng;Sun, Helin;Zhang, Zhiwei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권7호
    • /
    • pp.2356-2376
    • /
    • 2021
  • In this paper, we proposed a novel modulation recognition method based on quantum elephant herding algorithm (QEHA) evolving neural network under impulse noise environment. We use the adaptive weight myriad filter to preprocess the received digital modulation signals which passing through the impulsive noise channel, and then the instantaneous characteristics and high order cumulant features of digital modulation signals are extracted as classification feature set, finally, the BP neural network (BPNN) model as a classifier for automatic digital modulation recognition. Besides, based on the elephant herding optimization (EHO) algorithm and quantum computing mechanism, we design a quantum elephant herding algorithm (QEHA) to optimize the initial thresholds and weights of the BPNN, which solves the problem that traditional BPNN is easy into local minimum values and poor robustness. The experimental results prove that the adaptive weight myriad filter we used can remove the impulsive noise effectively, and the proposed QEHA-BPNN classifier has better recognition performance than other conventional pattern recognition classifiers. Compared with other global optimization algorithms, the QEHA designed in this paper has a faster convergence speed and higher convergence accuracy. Furthermore, the effect of symbol shape has been considered, which can satisfy the need for engineering.

Review of low-noise radio-frequency amplifiers based on superconducting quantum interference device

  • Lee, Y.H.;Chong, Y.;Semertzidis, Y.K.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제16권4호
    • /
    • pp.1-6
    • /
    • 2014
  • Superconducting quantum interference device (SQUID) is a sensitive detector of magnetic flux signals. Up to now, the main application of SQUIDs has been measurements of magnetic flux signals in the frequency range from near DC to several MHz. Recently, cryogenic low-noise radio-frequency (RF) amplifiers based on DC SQUID are under development aiming to detect RF signals with sensitivity approaching quantum limit. In this paper, we review the recent progress of cryogenic low-noise RF amplifiers based on SQUID technology.

Optical dielectric function of impurity doped Quantum dots in presence of noise

  • Ghosh, Anuja;Bera, Aindrila;Ghosh, Manas
    • Advances in nano research
    • /
    • 제5권1호
    • /
    • pp.13-25
    • /
    • 2017
  • We examine the total optical dielectric function (TODF) of impurity doped GaAs quantum dot (QD) from the viewpoint of anisotropy, position-dependent effective mass (PDEM) and position dependent dielectric screening function (PDDSF), both in presence and absence of noise. The dopant impurity potential is Gaussian in nature and noise employed is Gaussian white noise that has been applied to the doped system via two different modes; additive and multiplicative. A change from fixed effective mass and fixed dielectric constant to those which depend on the dopant coordinate manifestly affects TODF. Presence of noise and also its mode of application bring about more rich subtlety in the observed TODF profiles. The findings indicate promising scope of harnessing the TODF of doped QD systems through expedient control of site of dopant incorporation and application of noise in desired mode.

GaAs/AlxGa1-xAs 이차원 전자계 기반 양자소자의 Switching Noise 억제 (Suppression of Switching Noise in a Quantum Device Based on GaAs/AlxGa1-xAs Two Dimensional Electron Gas System)

  • 오영헌;서민기;정윤철
    • 한국진공학회지
    • /
    • 제21권3호
    • /
    • pp.151-157
    • /
    • 2012
  • GaAs/$Al_xGa_{1-x}As$ 이차원 전자계는 양자점, QPC (quantum point contact), 전자 간섭계 등 다양한 형태의 양자구조 제작에 널리 사용된다. 하지만 일반적으로 GaAs 기반 양자소자는 극저온에서 소자의 전도도가 시간에 따라 변하거나 두 가지의 전 상태 사이를 왔다 갔다 하는 random telegraph noise 때문에 소자의 동작 특성이 상당히 불안하다. 이러한 문제점을 해결하기 위하여 산소 플라즈마를 이용한 소자의 표면처리가 소자의 안정성에 미치는 영향을 연구하였다. 이를 통해 소자의 표면을 산소 플라즈마를 이용하여 50 W~120 W 사이의 출력으로 30 초간 처리한 후 HCl : $H_2O$ (1 : 3) 용액을 이용하여 10초간 습식식각한 경우 전도도의 안정성이 매우 향상됨을 알 수 있었다.

적응성 가중 메디안 필터를 이용한 의료용 X선 투시 영상의 양자잡음 제거 (Reduction of Quantum Noise using Adaptive Weighted Median filter in Medical Radio-Fluoroscoy Image)

  • 이후민;남문현
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제51권10호
    • /
    • pp.468-476
    • /
    • 2002
  • Digital images are easily corrupted by noise during the data transmission, data capture and data processing. A technical method of noise analyzing and adaptive filtering for reducing of quantum noise in medical radio-fluoroscopy images is presented. By adjusting the characteristics of the filter according to local statistics around each pixel of the image as moving windowing, it is possible to suppress noise sufficiently while preserve edge and other significant information required in diagnosis. We proposed adaptive weighed median(AWM) filters based on local statistics. We showed two ways of realizing the AWM filters. One is a simple type of AWM filter, which is constructed by Homogeneous factor(HF). Homogeneous factor(HF) from the noise models that enables the filter to recognize the local structures of the image is introduced, and an algorithm for determining the HF fitted to the diagnostic systems with various inner statistical properties is proposed. We show by the experimented that the performances of proposed method is superior to these of other filters and models in preserving small details and suppressing the noise at homogeneous region. The proposed algorithms were implemented by Visual C++ language on a IBM-PC Pentium 550 for testing purposes and the effects and results of the filter in the various levels of noise and images were proposed by comparing the values of NMSE(normalized mean square error) with the value of the other existing filtering methods.

Hybrid Filter Based on Neural Networks for Removing Quantum Noise in Low-Dose Medical X-ray CT Images

  • Park, Keunho;Lee, Hee-Shin;Lee, Joonwhoan
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제15권2호
    • /
    • pp.102-110
    • /
    • 2015
  • The main source of noise in computed tomography (CT) images is a quantum noise, which results from statistical fluctuations of X-ray quanta reaching the detector. This paper proposes a neural network (NN) based hybrid filter for removing quantum noise. The proposed filter consists of bilateral filters (BFs), a single or multiple neural edge enhancer(s) (NEE), and a neural filter (NF) to combine them. The BFs take into account the difference in value from the neighbors, to preserve edges while smoothing. The NEE is used to clearly enhance the desired edges from noisy images. The NF acts like a fusion operator, and attempts to construct an enhanced output image. Several measurements are used to evaluate the image quality, like the root mean square error (RMSE), the improvement in signal to noise ratio (ISNR), the standard deviation ratio (MSR), and the contrast to noise ratio (CNR). Also, the modulation transfer function (MTF) is used as a means of determining how well the edge structure is preserved. In terms of all those measurements and means, the proposed filter shows better performance than the guided filter, and the nonlocal means (NLM) filter. In addition, there is no severe restriction to select the number of inputs for the fusion operator differently from the neuro-fuzzy system. Therefore, without concerning too much about the filter selection for fusion, one could apply the proposed hybrid filter to various images with different modalities, once the corresponding noise characteristics are explored.

Fabrication and statistical characterization of Nb SQUID sensors for multichannel SQUID system

  • Kim, B.K.;Yu, K.K.;Kim, J.M.;Kwon, H.;Lee, S.K.;Lee, Y.H.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제22권4호
    • /
    • pp.62-66
    • /
    • 2020
  • We fabricated superconducting quantum interference devices (SQUIDs) based on Nb Josephson junctions, and characterized the key parameters of the SQUIDs. The SQUIDs are double relaxation oscillation SQUIDs (DROSs) having larger flux-to-voltage transfer coefficient than the standard DC-SQUIDs. SQUID sensors were fabricated by using Nb junction technology consisted of a DC magnetron sputtering and a conventional photolithography process. In multichannel SQUID systems for whole-head magnetoencephalography measurement with a helmet-type SQUID array, we need about 336 SQUID sensors for each system. In this paper, we fabricated a few hundred SQUID sensors, measured the critical current, flux modulation voltage and decided if each tested SQUID can be used for the multichannel systems. As the criterion for the acceptance of the sensors, we chose the critical current and amplitude of the modulation voltage to be 8 ㎂ and 80 ㎶, respectively. The average critical current of the SQUIDs was 10.58 ㎂. The typical flux noise of the SQUIDs with input coil shorted was 2 μΦ0/√Hz at white region.

한국천문연구원의 진공양자조임 광원 개발 및 EPR 실험 소개 (Status of squeezed vacuum experiment and introduction to EPR)

  • 김창희;이성호;박준규;김윤종;정의정;제순규;성현철;한정열
    • 천문학회보
    • /
    • 제46권1호
    • /
    • pp.37.2-37.2
    • /
    • 2021
  • One of the main limitations to the ground- based gravitational-wave (GW) detector sensitivity is quantum noise, which is induced by vacuum fluctuations entering the detector output port. The replacement of this ordinary vacuum field with a squeezed vacuum field has proven to be effective approach to mitigate the quantum noise in the interferometer detector and it is currently used in advanced detectors. However, the current frequency-independent squeezed vacuum cannot reduce quantum radiation pressure noise at low frequencies. A possible solution to reduce quantum noise in the broadband spectrum is the injection of frequency-dependent squeezed (FDS) vacuum. We will report the current status of squeezing experiment at KASI and introduce to the EPR (Einstein-Podolsky-Rosen) entangled state of light, which can realize FDS light without the need for an additional, external cavity.

  • PDF