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CONVOLUTIONS OF WHITE NOISE OPERATORS

Un Cig Ji and Young Yi Kim

Abstract. Motivated by the convolution product of white noise func-
tionals, we introduce a new notion of convolution products of white noise

operators. Then we study several interesting relations between the convo-
lution products and the quantum generalized Fourier-Mehler transforms,
and study a quantum-classical correspondence.

1. Introduction

The white noise theory initiated by Hida [5] to give rigorous meaning of
white noise as the time derivative of the Brownian motion has been extensively
developed with wide applications to stochastic calculus, mathematical finance
and mathematical physics, etc. One of the important applications of the white
noise theory is to infinite dimensional analysis, specially infinite dimensional
harmonic analysis, in which the convolution product [11] and Fourier-Gauss
transforms [3, 11], generally with operator parameters [2], of white noise func-
tionals were studied. The quantum white noise theory [8] has been developed
based on the quantum decomposition of the (classical) white noise into the sum
of the pointwise annihilation and creation operators. The quantum white noise
theory plays an important role in the study of problems including singularities
concerned with (white noise) operators, and then widely applied to quantum
stochastic calculus [6, 10, 12, 15], see also [13] and references cited therein. On
the other hand, a convolution of white noise operators was studied in [1] and
the Fourier-Gauss transforms were generalized in [7] as transforms acting on
white noise operators.

In this paper, motivated by the convolution product on white noise func-
tionals and studies in [1], we introduce a new notion of convolution products
of white noise operators and study several interesting relations between the
convolutions and the quantum generalized Fourier-Mehler transforms of white
noise operators.
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This paper is organized as follows: In Section 2 we recall basic notions and
well-known results in white noise theory, which are necessary for our study,
see [11, 13]. In Section 3 we introduce convolution products of white noise
operators and then study relations between the convolution products and the
quantum generalized Fourier-Mehler transforms, finally we study a quantum-
classical correspondence including various relations between (classical) convo-
lution products and generalized Fourier-Mehler transforms.

2. Preliminaries

2.1. Ridging of Fock space

Let H be a (complex) Hilbert space with norm | · |0. Let A be a selfadjoint

operator in H such that
∥∥A−1

∥∥
OP

< 1 and
∥∥A−1

∥∥2
HS

< ∞. By the standard
construction from H and A, we have a Gelfand triple:

E ⊂ H ⊂ E∗,

see [11, 14], where E∗ is the strong dual space of E. For each p ∈ R, | ξ |p ≡
|Apξ |0. The topology of E is defined by the Hilbertian norms {| · |p : p ∈ R},
and then E becomes a countable Hilbert nuclear space. The canonical bilinear
form on E∗ × E is denoted by ⟨·, ·⟩.

The (Boson) Fock space over H, denoted by Γ(H), is the Hilbert space

consisting of all sequences (fn)
∞
n=0 such that fn ∈ H⊗̂n the n-fold symmetric

tensor product of H and
∑∞

n=0 n! | fn |
2
0 < ∞, where H⊗̂0 = C. Let Γ(A) be

the second quantization of the operator A defined by

Γ(A)ϕ =
(
A⊗nfn

)∞
n=0

, ϕ = (fn)
∞
n=0 ∈ Γ(H).

Then Γ(A) is a selfadjoint operator in Γ(H) with
∥∥Γ(A)−1

∥∥
OP

< 1 and∥∥Γ(A)−1
∥∥
HS

< ∞. By the standard construction from Γ(H) and Γ(A), we
have a Gelfand triple:

(E) ⊂ Γ(H) ⊂ (E)∗,

where (E) is the space of all ϕ = (fn)
∞
n=0 in Γ(H) with fn ∈ E⊗̂n such that

∥ϕ ∥2p =
∑∞

n=0 n! | fn |
2
p < ∞ for all p ≥ 0 and (E)∗ is the strong dual space

of (E). Moreover, it is known that for each Φ ∈ (E)∗ there exists a unique
sequence {Fn}∞n=0 with Fn ∈ (E⊗n)

∗
sym such that

⟨⟨Φ, ϕ⟩⟩ =
∞∑

n=0

n! ⟨Fn, fn⟩ , ϕ = (fn)
∞
n=0 ∈ (E).

For each ξ ∈ E, an exponential vector (or coherent vector) ϕξ is defined by

ϕξ =

(
1, ξ,

ξ⊗2

2!
, . . . ,

ξ⊗n

n!
, . . .

)
.

It is well-known that {ϕξ : ξ ∈ E} spans a dense subspace of (E).
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2.2. White noise operators

A continuous linear operator Ξ from (E) into (E)∗ is called a white noise op-
erator. Let L((E), (E)∗) denote the space of all white noise operators equipped
with the topology of bounded convergence. The symbol of Ξ ∈ L((E), (E)∗) is
defined by

Ξ̂(ξ, η) = ⟨⟨Ξϕξ, ϕη⟩⟩ , ξ, η ∈ E.

Since {ϕξ : ξ ∈ E} spans a dense subspace of (E), every Ξ ∈ L((E), (E)∗) is
uniquely determined by its symbol by virtue of the following theorem.

Theorem 2.1 ([9, 14]). Let Θ : E×E → C be a C-valued function. Then Θ is
the symbol of an operator Ξ ∈ L((E), (E)∗) if and only if Θ is Gâteaux-entire
and there exist constants p ≥ 0 and C,K ≥ 0 such that

|Θ(ξ, η)| ≤ CeK(|ξ|2p+|η|2p), ξ, η ∈ E.

Moreover, Ξ ∈ L((E), (E)) if and only if for any p ≥ 0 and ϵ ≥ 0, there exist
constants C ≥ 0 and q ≥ 0 such that

|Θ(ξ, η)| ≤ Ceϵ(|ξ|
2
p+q+|η|2−p), ξ, η ∈ E.

By applying Theorem 2.1, for each given Ξ1,Ξ2 ∈ L((E), (E)∗), the Wick
product Ξ1 ⋄ Ξ2 ∈ L((E), (E)∗) of Ξ1 and Ξ2 is well-defined by

(1) Ξ̂1 ⋄ Ξ2(ξ, η) = Ξ̂1(ξ, η)Ξ̂2(ξ, η)e
−⟨ξ, η⟩, ξ, η ∈ E,

see [4].
The symbol of the Gross Laplacian ∆G ∈ L((E), (E)) is given by

(2) ∆̂G(ξ, η) = ⟨ξ, ξ⟩ e⟨ξ, η⟩, ξ, η ∈ E,

see [3, 11, 14].
On the other hand, for each Ξ ∈ L((E), (E)∗) we define T -symbol by

(3) Top(Ξ)(ξ, η) = Ξ̂(iξ, iη)e−
1
2 (⟨ξ, ξ⟩+⟨η, η⟩), ξ, η ∈ E,

which is motivated by the T -transform of white noise functionals (see Section
4).

3. Convolutions and transforms of white noise operators

In this section, we introduce a new notion of convolution products of white
noise operators and study some relations between the convolutions and the
quantum generalized Fourier-Mehler transforms.
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3.1. Convolution products of white noise operators

Motivated by the convolution of white noise functionals (see Section 4), for
each fixed Υ ∈ L((E), (E)∗), we define a convolution Ξ1 ∗Υ Ξ2 ∈ L((E), (E)∗)
of two white noise operators Ξ1,Ξ2 ∈ L((E), (E)∗) by

Ξ1 ∗Υ Ξ2 = Ξ1 ⋄ Ξ2 ⋄Υ.

Here by applying Theorem 2.1 we see that Ξ1 ∗Υ Ξ2 becomes a white noise
operator.

Proposition 3.1. Let Υ ∈ L((E), (E)∗) be given. Then for any Ξ1,Ξ2 ∈
L((E), (E)∗),

Top(Ξ1 ∗Υ Ξ2) = Top(Ξ1)Top(Ξ2)

if and only if Υ = e
1
2∆

∗
GΓ(2I) e

1
2∆G .

Proof. By (3) and (1) we obtain that for any ξ, η ∈ E,

Top (Ξ1 ∗Υ Ξ2) (ξ, η)(4)

= (Ξ1 ⋄ Ξ2 ⋄Υ)̂ (iξ, iη)C(ξ, η)

= Ξ̂1(iξ, iη)Ξ̂2(iξ, iη)Υ̂(iξ, iη)C(ξ, η)e2⟨ξ, η⟩

= Top(Ξ1)(ξ, η)Top(Ξ2)(ξ, η)Υ̂(iξ, iη)C(iξ, iη)e2⟨ξ, η⟩,

where C(ξ, η) = e−
1
2 (⟨ξ, ξ⟩+⟨η, η⟩). Hence, Top(Ξ1 ∗Υ Ξ2) = Top(Ξ1)Top(Ξ2) if

and only if

Υ̂(iξ, iη) = e−
1
2 (⟨ξ, ξ⟩+⟨η, η⟩)−2⟨ξ, η⟩,

which is equivalent to Υ = e
1
2∆

∗
GΓ(2I) e

1
2∆G . □

Proposition 3.2. Let Υ ∈ L((E), (E)∗) be given. If Υ = Γ(I), then for any
Ξ1,Ξ2 ∈ L((E), (E)∗), the convolution Ξ1 ∗Υ Ξ2 coincides with the convolution
Ξ1 ∗ Ξ2 in [1]. In this case, for ξ, η ∈ E, Top (Ξ1 ∗ Ξ2) (ξ, η) is given by

Top (Ξ1 ∗ Ξ2) (ξ, η) = Top (Ξ1) (ξ, η)Top (Ξ2) (ξ, η)e
1
2 ⟨ξ+η, ξ+η⟩.

Proof. The proof is straightforward from (4). □

3.2. Relations between convolutions and transforms

By applying Theorem 2.1, we can easily see that there exists an operator
Gα, β ∈ L((E), (E)) such that

(5) Gα, βϕξ = ϕβξ exp{α ⟨ξ, ξ⟩}, ξ ∈ E.

From (5) and (2), we can easily see that

(6) Gα, β = Γ(βI)eα∆G ,
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which is called the Fourier-Gauss transform. The adjoint operator of Gα, β is
denoted by Fα, β ∈ L((E)∗, (E)∗) and called the generalized Fourier-Mehler
transform. Then by the duality of (6), we have

Fα, β = eα∆
∗
GΓ(βI).

If α(θ) = 1
2 ie

iθ sin θ and β(θ) = eiθ for θ ∈ R, then Fθ ≡ Fα(θ), β(θ) is called
the Fourier-Mehler transform. For more details, we refer to [3].

Let α, β, γ, δ ∈ C. The quantum generalized Fourier-Mehler transform

FQ
α, β; γ, δ ∈ L(L((E), (E)∗)) studied in [7] is defined by

FQ
α, β; γ, δ(Ξ) = Fα, γΞGβ, δ, Ξ ∈ L((E), (E)∗).(7)

Theorem 3.3. Let αi, βi ∈ C and γi, δi ∈ C∗ = C \ {0} for i = 1, 2, 3, and
Υ,Υ′ ∈ L((E), (E)∗) be given. Then for any Ξ1,Ξ2 ∈ L((E), (E)∗),

(8) FQ
α1, β1; γ1, δ1

(Ξ1 ∗Υ Ξ2) = FQ
α2, β2; γ2, δ2

(Ξ1) ∗Υ′ FQ
α3, β3; γ3, δ3

(Ξ2)

if and only if γ1 = γ2 = γ3, δ1 = δ2 = δ3 and

Υ =
[
Γ
(
γ−1
1 I

)
Υ′Γ

(
δ−1
1 I

)]
(9)

× ⋄
[
e(α2+α3−α1)γ

−2
1 ∆∗

G Γ((3− 2(γ1δ1)
−1)I) e(β2+β3−β1)δ

−2
1 ∆G

]
.

Proof. By (7) and (1) we obtain that for any ξ, η ∈ E,(
FQ

α1, β1; γ1, δ1
(Ξ1 ∗Υ Ξ2)

)̂
(ξ, η)(10)

= ⟨⟨(Ξ1 ⋄ Ξ2 ⋄Υ)ϕδ1ξ, ϕγ1η⟩⟩ eβ1⟨ξ, ξ⟩+α1⟨η, η⟩

= ⟨⟨Ξ1ϕδ1ξ, ϕγ1η⟩⟩ ⟨⟨Ξ2ϕδ1ξ, ϕγ1η⟩⟩ ⟨⟨Υϕδ1ξ, ϕγ1η⟩⟩

× eβ1⟨ξ, ξ⟩+α1⟨η, η⟩−2⟨δ1ξ, γ1η⟩,

and (
FQ

α2, β2; γ2, δ2
(Ξ1) ⋄ FQ

α3, β3; γ3, δ3
(Ξ2) ⋄Υ′

)̂
(ξ, η)(11)

= ⟨⟨Ξ1ϕδ2ξ, ϕγ2η⟩⟩ ⟨⟨Ξ2ϕδ3ξ, ϕγ3η⟩⟩ Υ̂′(ξ, η)

× e(β2+β3)⟨ξ, ξ⟩+(α2+α3)⟨η, η⟩−2⟨ξ, η⟩.

By comparing (10) and (11), we see that (8) holds if and only if γ1 = γ2 = γ3,
δ1 = δ2 = δ3 and for any ξ, η ∈ E,

Υ̂ (δ1ξ, γ1η) = Υ̂′(ξ, η)e(α2+α3−α1)⟨η, η⟩+2(γ1δ1−1)⟨ξ, η⟩+(β2+β3−β1)⟨ξ, ξ⟩,(12)

which is equivalent to (9). □

Corollary 3.4. Let αi, βi ∈ C for i = 1, 2, 3, γ, δ ∈ C∗ and Υ ∈ L((E), (E)∗)
be given. Then for any Ξ1,Ξ2 ∈ L((E), (E)∗),

FQ
α1, β1; γ, δ

(Ξ1 ∗Υ Ξ2) = FQ
α2, β2; γ, δ

(Ξ1) ⋄ FQ
α3, β3; γ, δ

(Ξ2)
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if and only if

Υ = e(α2+α3−α1)γ
−2∆∗

G Γ((2− (γδ)−1)I) e(β2+β3−β1)δ
−2∆G .

Proof. Since Γ(I) is the identity with respect to the Wick product, then ∗Γ(I)
coincides with the Wick product ⋄. Therefore, by applying Theorem 3.3, the
proof is straightforward. □

The following corollary is immediate from Corollary 3.4.

Corollary 3.5. Let α, β ∈ C and γ, δ ∈ C∗ and Ξ1,Ξ2 ∈ L((E), (E)∗). Then

FQ
α, β; γ, δ(Ξ1 ∗Υ Ξ2) = FQ

α, β; γ, δ(Ξ1) ⋄ FQ
α, β; γ, δ(Ξ2)

if and only if Υ = eαγ
−2∆∗

G Γ((2− (γδ)−1)I) eβδ
−2∆G .

Corollary 3.6. Let αi, βi ∈ C for i = 1, 2, 3, γ, δ ∈ C∗ and Υ ∈ L((E), (E)∗)
be given. Then for any Ξ1,Ξ2 ∈ L((E), (E)∗),

FQ
α1, β1; γ,δ

(Ξ1 ⋄ Ξ2) = FQ
α2, β2; γ,δ

(Ξ1) ∗Υ FQ
α3, β3; γ,δ

(Ξ2)

if and only if

(13) Υ = eα∆
∗
G Γ ((2− γδ)I) eβ∆G

with α = −(α2 + α3 − α1) and β = −(β2 + β3 − β1).

Proof. The proof is a simple application of Theorem 3.3 with the fact that(
e⋄Ξ

)⋄(−1)
= e⋄(−Ξ), whenever the Wick exponential:

e⋄Ξ =

∞∑
n=0

1

n!
Ξ⋄n

is well defined as a white noise operator in L((E), (E)∗). Here Ξ⋄(−1) stands the
(Wick) inverse operator of Ξ ∈ L((E), (E)∗) with respect to the Wick product.
Also, we can easily check that Γ(ρI)⋄(−1) = Γ ((2− ρ)I) for any ρ ∈ C. Since
we know that

eϱ∆
∗
G Γ(ρI) eσ∆G = eϱ∆

∗
G ⋄ Γ(ρI) ⋄ eσ∆G

for any ρ, ϱ, σ ∈ C, from (9) we have

(14) Υ = Γ(γI)
[
eαγ

−2∆∗
G Γ((2(γδ)−1 − 1)I) eβδ

−2∆G

]
Γ(δI)

with α = −(α2 + α3 − α1) and β = −(β2 + β3 − β1). On the other hand, for
any ρ, σ ∈ C, we can easily check that

eσ∆G Γ(ρI) = Γ(ρI) eσρ
2∆G

and by duality,

Γ(ρI) eσ∆
∗
G = eσρ

2∆∗
G Γ(ρI).

Therefore, from (14) we see that Υ is of the form as in (13). □
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Remark 3.7. By applying (12) we can prove Corollary 3.6 directly. However,
in the proof of Corollary 3.6 we used the Wick calculus of white noise operators
which is a useful tool to study equations associated with Wick product arising
in the quantum field theory.

The following corollary is immediate from Corollary 3.6.

Corollary 3.8. Let α, β ∈ C, γ, δ ∈ C∗ and Υ ∈ L((E), (E)∗) be given. Then
for any Ξ1,Ξ2 ∈ L((E), (E)∗),

FQ
α, β; γ,δ(Ξ1 ⋄ Ξ2) = FQ

α, β; γ,δ(Ξ1) ∗Υ FQ
α, β; γ,δ(Ξ2)

if and only if

Υ = e−α∆∗
G Γ ((2− γδ)I) e−β∆G .

4. Quantum-classical correspondence

4.1. S-transform, T -transform and convolution

The S-transform of an element Φ ∈ (E)∗ is a complex valued function on E
defined by

SΦ(ξ) = ⟨⟨Φ, ϕξ⟩⟩ , ξ ∈ E.

Then every Φ∈(E)∗ is uniquely determined by its S-transform since {ϕξ :ξ∈E}
spans a dense subspace of (E). The Wick product Φ ⋄Ψ of Φ and Ψ in (E)∗ is
defined as the unique element of (E)∗ such that S(Φ ⋄Ψ) = S(Φ)S(Ψ). Then
((E)∗, ⋄) is a commutative algebra. The T -transform TΦ of Φ ∈ (E)∗ is defined
to be a complex valued function on E satisfying

TΦ(ξ) = e−
1
2 ⟨ξ, ξ⟩SΦ(iξ), ξ ∈ E,

see [5, 11]. For each Ξ ∈ L((E), (E)∗) and any ξ ∈ E, we have

(15) TOP (Ξ) (0, ξ) = Ξ̂ (0, iξ) e−
1
2 ⟨ξ, ξ⟩ = T (Ξϕ0) (ξ),

where ϕ0 = (1, 0, . . .) ∈ (E) is the vacuum vector.
For fixed F ∈ (E)∗, a convolution Φ ∗F Ψ of Φ,Ψ ∈ (E)∗ is defined by

Φ ∗F Ψ = Φ ⋄Ψ ⋄ F.
In particular, the convolution product ∗F with F = gc coincides with the
convolution product ∗ studied in [11], i.e., for any Φ,Ψ ∈ (E)∗

Φ ∗g−2 Ψ = Φ ∗Ψ ≡ Φ ⋄Ψ ⋄ g−2,

where gc ∈ (E) is the Gaussian (white noise) function with mean 0 and variance
c such that

(16) Sgc(ξ) = exp

{
− 1

2(1 + c)
⟨ξ, ξ⟩

}
, c ̸= −1.

Lemma 4.1. For each c ∈ C with c ̸= 0 we have

ec∆
∗
Gϕ0 = g−(1+ 1

2c )
.
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Proof. For any ξ ∈ E, we have

S
(
ec∆

∗
Gϕ0

)
(ξ) =

⟨⟨
ϕ0, e

c∆Gϕξ
⟩⟩

= ec⟨ξ, ξ⟩

and so the proof is immediate from (16). □

4.2. Quantum-classical correspondence

For Φ ∈ (E)∗ and ϕ ∈ (E), the (pointwise) multiplication Φϕ ∈ (E)∗ is
well-defined as

⟨⟨Φϕ, ψ⟩⟩ = ⟨⟨Φ, ϕψ⟩⟩ , ψ ∈ (E).

Here we use the fact that (E) is closed under the (pointwise) multiplication
as white noise functionals (Cauchy product of vectors), see [13]. For each
Φ ∈ (E)∗, let MΦ ∈ L((E), (E)∗) be the multiplication operator associated
with Φ, i.e., MΦ(ϕ) = Φϕ for any ϕ ∈ (E).

For each Ξ1,Ξ2 ∈ L((E), (E)∗) we can easily see that

(17) (Ξ1 ⋄ Ξ2)ϕ0 = (Ξ1ϕ0) ⋄ (Ξ2ϕ0)

and so for each Φ,Ψ ∈ (E)∗, (MΦ ⋄MΨ)ϕ0 = Φ ⋄ Ψ, more generally, we have
the following lemma.

Lemma 4.2. Let F ∈ (E)∗. Then for any Φ,Ψ ∈ (E)∗,

(18) MΦ ⋄MΨ =MΦ⋄Ψ, MΦ ∗MF
MΨ =MΦ∗FΨ.

Proof. The second identity is immediate from the definition and the first iden-
tity. The proof of the first identity is straightforward by taking operator sym-
bols on both sides using the fact that ϕξϕη = ϕξ+ηe

⟨ξ, η⟩ for any ξ, η ∈ E. □

By applying Proposition 3.1 with (15) and (18) we have the following propo-
sition.

Proposition 4.3. Let F ∈ (E)∗ be given. Then for any Φ,Ψ ∈ (E)∗,

(19) T (Φ ∗F Ψ) = T (Φ)T (Ψ)

if and only if F = g−2.

Proof. By applying Proposition 3.1 with (15) and (18) we can see that (19)

holds if and only if F = Υϕ0 with Υ = e
1
2∆

∗
GΓ(2I) e

1
2∆G . On the other hand,

by Lemma 4.1 we have Υϕ0 = e
1
2∆

∗
Gϕ0 = g−2. □

Theorem 4.4. Let αi ∈ C for i = 1, 2, 3 and γ ∈ C∗. Let F,G ∈ (E)∗ be
given. Then for any Φ,Ψ ∈ (E)∗,

(20) Fα1, γ(Φ ∗F Ψ) = Fα2, γ(Φ) ∗G Fα3, γ(Ψ)

if and only if

(21) F = e(α2+α3−α1)γ
−2∆∗

GΓ
(
γ−1I

)
G.
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Proof. For any ξ ∈ E, we obtain that

S (Fα1, γ(Φ ∗F Ψ)) (ξ) = eα1⟨ξ, ξ⟩SΦ(γξ)SΨ(γξ)SF(γξ)

and

S (Fα2, γ(Φ) ∗G Fα3, γ(Ψ)) (ξ) = e(α2+α3)⟨ξ, ξ⟩SΦ(γξ)SΨ(γξ)SG(ξ).

Therefore, (20) holds if and only if for any ξ ∈ E

SF(γξ) = e(α2+α3−α1)⟨ξ, ξ⟩SG(ξ),

which is equivalent to (21). □

Remark 4.5. In Theorem 4.4, if α2 + α3 ̸= α1, then by taking S-transform on
(21), we can easily see that

F = Γ
(
γ−1I

)
G ⋄ gd, d = −

(
1 +

1

2 (α2 + α3 − α1) γ−2

)
.

Lemma 4.6. Let G ∈ (E)∗ and α, γ ∈ C. Then we have

M
eα∆∗

GΓ(γI)G
= [Γ(γI)MGΓ(γI)] ⋄ eα∆

∗
GΓ

((
2α+ 2− γ2

)
I
)
eα∆G .(22)

Proof. For any ξ, η ∈ E we have

̂M
eα∆∗

GΓ(γI)G
(ξ, η) =

⟨⟨
eα∆

∗
GΓ(γI)G, ϕξ+η

⟩⟩
e⟨ξ, η⟩

=
⟨⟨
G, ϕγ(ξ+η)

⟩⟩
eα⟨ξ+η, ξ+η⟩+⟨ξ, η⟩

= ⟨⟨G, ϕγξϕγη⟩⟩ eα⟨ξ, ξ⟩+α⟨η, η⟩+(2α+2−γ2)⟨ξ, η⟩−⟨ξ, η⟩

= ⟨⟨Γ(γI)MGΓ(γI)ϕξ, ϕη⟩⟩

× eα⟨ξ, ξ⟩+α⟨η, η⟩+(2α+2−γ2)⟨ξ, η⟩−⟨ξ, η⟩,

where we used the fact that ϕξϕη = ϕξ+ηe
⟨ξ, η⟩, which implies (22). □

For any α, β, γ, δ ∈ C and Ξ ∈ L((E), (E)∗) we can easily check that

FQ
α, β;γ,δ(Ξ)ϕ0 = Fα, γ(Ξϕ0)

and so, by applying (17), for any F ∈ (E)∗ we have

FQ
α, β;γ,δ(Ξ1 ∗MF

Ξ2)ϕ0 = Fα, γ(Ξ1ϕ0 ∗F Ξ2ϕ0)

for any Ξ1,Ξ2 ∈ L((E), (E)∗).

Theorem 4.7. Let αi ∈ C for i = 1, 2, 3 and γ ∈ C∗ with α2+α3−α1 = γ2−1
2 .

Let F,G ∈ (E)∗ be given. Then for any Ξ1,Ξ2 ∈ L((E), (E)∗),

(23) Fα1,α1; γ,γ(Ξ1 ∗MF
Ξ2) = Fα2,α2; γ,γ(Ξ1) ∗MG

Fα3,α3; γ,γ(Ξ2)

if and only if

(24) F = e
1
2 (1−γ−2)∆∗

GΓ
(
γ−1I

)
G.
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Proof. ⇒) By acting vacuum vector ϕ0 on the both sides of (23), we have

Fα1, γ(Ξ1ϕ0 ∗F Ξ2ϕ0) = Fα2, γ(Ξ1ϕ0) ∗G Fα3, γ(Ξ2ϕ0).

Therefore, by Theorem 4.4, (24) holds.
⇐) Suppose that (24) holds. Then by Lemma 4.6, we have

MF = Γ
(
γ−1I

)
MGΓ

(
γ−1I

)
⋄ ec∆

∗
GΓ

(
(3− 2γ−2)I

)
ec∆G

with c = (α2 + α3 − α1)γ
−2 and α2 + α3 − α1 = γ2−1

2 . Therefore, by Theorem
3.3, (23) holds. □

Corollary 4.8. Let α ∈ C and γ ∈ C∗. Let F,G ∈ (E)∗ be given. Then for
any Φ,Ψ ∈ (E)∗,

(25) Fα, γ(Φ ∗F Ψ) = Fα, γ(Φ) ∗G Fα, γ(Ψ)

if and only if

(26) F = eαγ
−2∆∗

GΓ
(
γ−1I

)
G.

In particular, by (26) and Lemma 4.1, for any Φ,Ψ ∈ (E)∗,

Fα, γ(Φ ∗g
−

(
1+

γ2

2α

) Ψ) = Fα, γ(Φ) ⋄ Fα, γ(Ψ)

for α ̸= 0, which is a special case of (26) with G = ϕ0.

Proof. The proof is immediate from Theorem 4.4. □

Let F,G ∈ (E)∗ be given such that (26) holds. Then we have

G = Γ (γI) e−αγ−2∆∗
GF.

On the other hand,

Γ (γI) e−αγ−2∆∗
G = e−α∆∗

GΓ (γI)

and so

(27) G = e−α∆∗
GΓ (γI)F = Γ (γI)F ⋄ g 1

2α−1,

for the second equality we assume that α ̸= 0. If F = ϕ0, then for α ̸= 0 by
Lemma 4.1 we have

G = e−α∆∗
GΓ (γI)ϕ0 = e−α∆∗

Gϕ0 = g 1
2α−1.

Therefore, by (25), we have the following corollary.

Corollary 4.9. Let α, γ ∈ C∗. Then for any Φ,Ψ ∈ (E)∗,

Fα, γ(Φ ⋄Ψ) = Fα, γ(Φ) ∗g 1
2α

−1
Fα, γ(Ψ),

in particular,

Fθ(Φ ⋄Ψ) = Fθ(Φ) ∗g−(2+i cot θ)
Fθ(Ψ)

for any θ ∈ R, see [11].
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Let F,G ∈ (E)∗ be given such that (26) holds. If F = gc for c ̸= −1 and
γ2 ̸= −2α(1 + c) ∈ C∗, then from (27) we have

(28) Gc = Γ (γI) gc ⋄ g 1
2α−1 = gd, d =

1 + c

γ2 + 2α(1 + c)
− 1.

In particular, G−2 = g−
(
1+ 1

γ2−2α

) for γ2 ̸= 2α ∈ C∗. Therefore, the following

corollary is immediate from Corollary 4.8.

Corollary 4.10. Let α, γ ∈ C∗ and c ∈ C with α ̸= −1 and γ2 ̸= −2α(1 + c).
Then for any Φ,Ψ ∈ (E)∗,

Fα, γ(Φ ∗gc Ψ) = Fα, γ(Φ) ∗Gc Fα, γ(Ψ),

where Gc is given as in (28). In particular, for any Φ,Ψ ∈ (E)∗,

Fα, γ(Φ ∗Ψ) = Fα, γ(Φ) ∗G−2 Fα, γ(Ψ)

for γ2 ̸= 2α, specially,

Fθ(Φ ∗Ψ) = Fθ(Φ) ∗gi tan θ−2
Fθ(Ψ)

for any θ ∈ R, see [11].

References

[1] M. Ben Chrouda, M. El Ouled, and H. Ouerdiane, Quantum stochastic processes and
applications, Quantum probability and infinite dimensional analysis, 115–125, QP–PQ:

Quantum Probab. White Noise Anal., 18, World Sci. Publ., Hackensack, NJ, 2005.
[2] D. M. Chung and U. C. Ji, Transforms on white noise functionals with their applications

to Cauchy problems, Nagoya Math. J. 147 (1997), 1–23.
[3] , Transformation groups on white noise functionals and their applications, Appl.

Math. Optim. 37 (1998), no. 2, 205–223.
[4] D. M. Chung, U. C. Ji, and N. Obata, Quantum stochastic analysis via white noise

operators in weighted Fock space, Rev. Math. Phys. 14 (2002), no. 3, 241–272.
[5] T. Hida, Analysis of Brownian Functionals, Carleton Math. Lect. Notes no. 13, Carleton

University, Ottawa, 1975.
[6] R. L. Hudson and K. R. Parthasarathy, Quantum Ito’s formula and stochastic evolu-

tions, Comm. Math. Phys. 93 (1984), no. 3, 301–323.
[7] U. C. Ji, Quantum extensions of Fourier-Gauss and Fourier-Mehler transforms, J. Ko-

rean Math. Soc. 45 (2008), no. 6, 1785–1801.
[8] U. C. Ji and N. Obata, Quantum white noise calculus, in “Non-Commutativity, Infinite-

Dimensionality and Probability at the Crossroads (N. Obata, T. Matsui and A. Hora,
Eds.),” pp. 143–191, World Scientific, 2002.

[9] , A unified characterization theorem in white noise theory, Infin. Dimens. Anal.
Quantum Probab. Relat. Top. 6 (2003), no. 2, 167–178.

[10] , Annihilation-derivative, creation-derivative and representation of quantum

martingales, Comm. Math. Phys. 286 (2009), no. 2, 751–775.
[11] H.-H. Kuo, White Noise Distribution Theory, CRC Press, 1996.
[12] P.-A. Meyer, Quantum Probability for Probabilists, Lect. Notes in Math. Vol. 1538,

Springer-Verlag, 1993.

[13] N. Obata, White Noise Calculus and Fock Space, Lect. Notes in Math. Vol. 1577,
Springer-Verlag, 1994.

[14] , An analytic characterization of symbols of operators on white noise functionals,
J. Math. Soc. Japan 45 (1993), no. 3, 421–445.



1014 UN CIG JI AND YOUNG YI KIM

[15] K. R. Parthasarathy, An Introduction to Quantum Stochastic Calculus, Birkhäuser,
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