DOI QR코드

DOI QR Code

Review of low-noise radio-frequency amplifiers based on superconducting quantum interference device

  • Lee, Y.H. (Center for Biosignals, Korea Research Institute of Standards and Science) ;
  • Chong, Y. (Center for Quantum Measurement Sciences, Korea Research Institute of Standards and Science) ;
  • Semertzidis, Y.K. (Center for Axion and Precision Physics Research, Institute for Basic Science)
  • Received : 2014.12.18
  • Accepted : 2014.12.30
  • Published : 2014.12.31

Abstract

Superconducting quantum interference device (SQUID) is a sensitive detector of magnetic flux signals. Up to now, the main application of SQUIDs has been measurements of magnetic flux signals in the frequency range from near DC to several MHz. Recently, cryogenic low-noise radio-frequency (RF) amplifiers based on DC SQUID are under development aiming to detect RF signals with sensitivity approaching quantum limit. In this paper, we review the recent progress of cryogenic low-noise RF amplifiers based on SQUID technology.

Keywords

References

  1. S. J. Asztalos et al., "Design and performance of the ADMX SQUID-based microwave receiver," Nucl. Instr. Meth. Phys. Res., A 656, pp. 39-44, 2011.
  2. S. Michotte, "Qubit dispersive readout scheme with a microstrip superconducting quantum interference device amplifier," Appl. Phys. Lett., vol. 94, pp. 122512-1-3, 2009. https://doi.org/10.1063/1.3109793
  3. M. A. Tarasov, V. Yu. Belitsky and G. V. Prokopenko, "DC SQUID RF Amplifiers," IEEE T. Appl. Supercond., vol. 2, pp. 79-83, 1992. https://doi.org/10.1109/77.139223
  4. G. V. Prokopenko, S. V. Shitov, V. P. Koshelets, D. B. Balashov, and J. Mygind, "A dc SQUID based low-noise 4 GHz amplifier," IEEE T. Appl. Supercond., vol. 7, pp. 3496-3499, 1997. https://doi.org/10.1109/77.622147
  5. J. Clarke, M. Mück, M. Andre, J. Gain and C. Heiden, "The Microstrip DC SQUID Amplifier," pp. 473-504, in Microwave Superconductivity, Eds. H. Weinstock and M. Nisenoff, 2001, Kluwer Academic Pub.
  6. M. Muck, and J. Clarke, "The superconducting quantum interference device microstrip amplifier: Computer models," J. Appl. Phys., vol. 88, pp. 6910-6918. 2000. https://doi.org/10.1063/1.1321026
  7. J. Clarke, A. T. Lee, M. Muck and P. L. Richards, "SQUID Voltmeters and Amplifiers," pp. 22-115, Chap. 8, in The SQUID Handbook, Eds. J. Clarke and A. I. Braginski, 2006, Wiley-VCH.
  8. D. Kinion and J. Clarke, "Superconducting quantum interference device as a near-quantum-limited amplifier for the axion dark-matter experiment," Appl. Phys. Lett., vol. 98, p. 202503, 2011. https://doi.org/10.1063/1.3583380
  9. M. Muck, M. Andre, J. Clarke, J. Gail and C. Heiden, "Microstrip superconducting quantum interference device radio-frequency amplifier: Tuning and cascading," Appl. Phys. Lett., vol. 75, pp. 3545-3547, 1999. https://doi.org/10.1063/1.125383
  10. M. P. DeFeo, P. Bhupathi, K. Yu, T. W. Heitmann, C. Song, R. McDermott, and B. L. T. Pourde, "Microstrip superconducting quantum interference device amplifiers with submicron junctions: Enhanced gain at gigahertz frequencies," Appl. Phys. Lett., vol. 97, pp. 092507-1-3, 2010. https://doi.org/10.1063/1.3486156
  11. M. P. DeFeo, and B. L. T. Pourde, "Superconducting microstrip amplifiers with sub-Kelvin noise temperature near 4 GHz," Appl. Phys. Lett., vol. 101, pp. 052603-1-4, 2012. https://doi.org/10.1063/1.4742164
  12. L. Spietz, K. Irwin, and J. Aumentado, "Input impedance and gain of a gigahertz amplifier using a dc superconducting quantum interference device in a quarter wave resonator," Appl. Phys. Lett., vol. 93, pp. 082506-1-3, 2008. https://doi.org/10.1063/1.2970967
  13. L. Spietz, K. Irwin, and J. Aumentado, "Superconducting quantum interference device amplifiers with over 27 GHz of gain-bandwidth product operated in the 4-8 GHz frequency range," Appl. Phys. Lett., vol. 95, pp. 092505-1-3, 2009. https://doi.org/10.1063/1.3220061
  14. G. J. Ribeill, D. Hover, Y. -F. Chen, S. Zhu, and R. McDermott, "Superconducting low-inductance undulatory galvanometer microwave amplifier: Theory," J. Appl. Phys., vol. 110, pp. 103901-1-13, 2011. https://doi.org/10.1063/1.3660217
  15. D. Hover, Y. -F. Chen, G. J. Ribeill, S. Zhu, S. Sendelbach, and R. McDermott, "Superconducting low-inductance undulatory galvanometer microwave amplifier," Appl. Phys. Lett., vol. 100, pp. 063503-1-3, 2012. https://doi.org/10.1063/1.3682309
  16. F. C. Wellstood, C. Urbina, and J. Clarke, "Hot-electron effects in metals," Phys. Rev. B, vol. 49, pp. 5942-5955, 1994. https://doi.org/10.1103/PhysRevB.49.5942