Browse > Article
http://dx.doi.org/10.12989/anr.2017.5.1.013

Optical dielectric function of impurity doped Quantum dots in presence of noise  

Ghosh, Anuja (Department of Chemistry, Physical Chemistry Section, Visva Bharati University)
Bera, Aindrila (Department of Chemistry, Physical Chemistry Section, Visva Bharati University)
Ghosh, Manas (Department of Chemistry, Physical Chemistry Section, Visva Bharati University)
Publication Information
Advances in nano research / v.5, no.1, 2017 , pp. 13-25 More about this Journal
Abstract
We examine the total optical dielectric function (TODF) of impurity doped GaAs quantum dot (QD) from the viewpoint of anisotropy, position-dependent effective mass (PDEM) and position dependent dielectric screening function (PDDSF), both in presence and absence of noise. The dopant impurity potential is Gaussian in nature and noise employed is Gaussian white noise that has been applied to the doped system via two different modes; additive and multiplicative. A change from fixed effective mass and fixed dielectric constant to those which depend on the dopant coordinate manifestly affects TODF. Presence of noise and also its mode of application bring about more rich subtlety in the observed TODF profiles. The findings indicate promising scope of harnessing the TODF of doped QD systems through expedient control of site of dopant incorporation and application of noise in desired mode.
Keywords
quantum dot; impurity; optical dielectric function; anisotropy; position-dependent effective mass; position-dependent dielectric screening function; Gaussian white noise;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Rajashabala, S. and Navaneethakrishnan, K. (2008), "Effects of dielectric screening and position dependent effective mass on donor binding energies and on diamagnetic susceptibility in a quantum well", Superlattices Microst., 43(3), 247-261.   DOI
2 Rezaei, G., Vaseghi, B., Taghizadeh, F., Vahdani, M.R.K. and Karimi, M.J. (2010),"Intersubband optical absorption coefficient changes and refractive index changes in a two dimensional quantum pseudodot system", Superlattices Microst., 48(5), 450-457.   DOI
3 Rezaei, G., Vahdani, M.R.K. and Vaseghi, B. (2011), "Nonlinear optical properties of a hydrogenic impurity in an ellipsoidal finite potential quantum dot", Current Appl. Phys., 11(2), 176-181.   DOI
4 Ribeiro, F.J., Latge, A., Pacheco, M. and Barticevic, Z. (1997), "Quantum dots under electric and magnetic fields: Impurity-related electronic properties", J Appl. Phys., 82(1), 270-274.   DOI
5 Safarpour, Gh., Izadi, M.A., Novzari, M. and Yazdanpanahi, S. (2014a), "Anisotropy effect on the linear and nonlinear optical properties of a laser dressed donor impurity in a GaAs/GaAlAs nanowire superlattice", Superlattices Microst., 75, 936-947.   DOI
6 Safarpour, Gh., Izadi, M.A., Novzari, M, Niknam, E. and Moradi, M. (2014b), "Anisotropy effect on the nonlinear optical properties of a three-dimensional quantum dot confined at the center of a cylindrical nano-wire", Physica E, 59, 124-132.   DOI
7 Sarkar, S., Ghosh, A.P., Mandal, A. and Ghosh, M. (2016), "Modulating nonlinear optical properties of impurity doped Quantum dots via the interplay between anisotropy and Gaussian white noise", Superlattices Microst., 90, 297-307.   DOI
8 Tas, H. and Sahin, M. (2012a), "The electronic properties of core/shell/well/shell spherical quantum dot with and without a hydrogenic impurity", J. Appl. Phys., 111(8), 083702.   DOI
9 Tiutiunnyk, A., Tulupenko, V., Mora-Ramos, M.E., Kasapoglu, E., Ungan, F., Sari, H., Sӧkmen, I. and Duque, C.A. (2014), "Electron-related optical responses in triangular quantum dots", Physica E, 60, 127-132.   DOI
10 Tas, H. and Sahin, M. (2012b), "The inter-sublevel optical properties of a spherical quantum dot-quantum well with and without a donor impurity", J. Appl. Phys., 112(5), 053717.   DOI
11 Vahdani, M.R.K. (2014), "The effect of the electronic intersubband transitions of quantum dots on the linear and nonlinear optical properties of dot-matrix system", Superlattices Microst., 76, 326-338.   DOI
12 Vahdani, M.R.K. and Rezaei, G. (2009), "Linear and nonlinear optical properties of a hydrogenic donor in lens-shaped quantum dots", Phys. Lett. A, 373(34), 3079-3084.   DOI
13 Xie, W. (2012), "Optical anisotropy of a donor in ellipsoidal quantum dots", Physica B, 407(23), 4588-4591.   DOI
14 Xie, W. (2013), "Third-order nonlinear optical susceptibility of a donor in elliptical quantum dots", Superlattices Microst., 53, 49-54.   DOI
15 Yang, L. and Xie, W. (2012), "Photoionization cross section of a donor impurity in a two dimensional anisotropic quantum dot", Physica B, 407(18), 3884-3887.   DOI
16 Cakir, B., Yakar, Y., Ozmen, A., Ozgur Sezer, M. and Sahin, M. (2010), "Linear and nonlinear optical absorption coefficients and binding energy of a spherical quantum dot", Superlattices Microst., 47(4), 556-566.   DOI
17 Zeng, Z., Garoufalis, C.S., Terzis, A.F. and Baskoutas, S. (2013), "Linear and nonlinear optical properties of ZnS/ZnO core shell quantum dots: Effect of shell thickness, impurity, and dielectric environment", J. Appl. Phys., 114(2), 023510.   DOI
18 Barseghyan, M.G., Kirakosyan, A.A. and Duque, C.A. (2009), "Donor-impurity related binding energy and photoinization cross-section in quantum dots: electric and magnetic fields and hydrostatic pressure effects", Euro. Phys. J. B, 72(4), 521-529.   DOI
19 Baskoutas, S., Paspalakis, E. and Terzis, A.F. (2007), "Electronic structure and nonlinear optical rectification in a quantum dot: effects of impurities and external electric field", J. Phys.: Cond. Matt., 19(39), 395024.   DOI
20 Bera, A., Ganguly, J., Saha, S. and Ghosh, M. (2016), "Interplay between noise and position dependent dielectric screening function in modulating nonlinear optical properties of impurity doped quantum dots", Optik, 127(16), 6771-6778.   DOI
21 Cakir, B., Yakar, Y. and Ozmen, A. (2012), "Refractive index changes and absorption coefficients in a spherical quantum dot with parabolic potential", J. Lumin., 132(10), 2659-2664.   DOI
22 Ghosh, A.P., Mandal, A., Sarkar, S. and Ghosh, M. (2016), "Influence of position-dependent effective mass on the nonlinear optical properties of impurity doped Quantum dots in presence of Gaussian white noise", Optics Commun., 367, 325-334.   DOI
23 Chen, T. and Xie, W. (2012), "Nonlinear optical properties of a three-dimensional anisotropic quantum dot", Solid State Commun., 152(4), 314-319.   DOI
24 Deng, Z.-Y., Guo, J.-K. and Lai, T.-R. (1994), "Impurity states in a spherical GaAs.$Ga_{1-x}Al_x$ As quantum dot: Effects of the spatial variation of dielectric screening", Phys. Rev. B, 50(8), 5736-5739.   DOI
25 Duque, C.A., Porras-Montenegro, N., Barticevic, Z., Pacheco, M. and Oliveira, L.E. (2005),"Electron-hole transitions in self-assembled InAs/GaAs quantum dots: Effects of applied magnetic fields and hydrostatic pressure", Microelectronics J., 36(3), 231-233.   DOI
26 Duque, C.A., Porras-Montenegro, N., Pacheco, M. and Oliveira, L.E. (2006), "Effects of applied magnetic fields and hydrostatic pressure on the optical transitions in self-assembled InAs/GaAs quantum dots", J. Phys.: Cond. Matt., 18(6), 1877.   DOI
27 Duque, C.A., Mora-Ramos, M.E., Kasapoglu, E., Ungan, F., Yesilgul, U., Sakiroglu, S., Sari, H. and Sӧkmen, I. (2013), "Impurity-related linear and nonlinear optical response in quantum-well wires with triangular cross section", J. Lumin., 143, 304-313.   DOI
28 Gulveren, B., Atav, U., Sahin, M. and Tomak, M. (2005), "A parabolic quantum dot with N electrons and an impurity", Physica E, 30(1-2), 143-149.   DOI
29 Jayam, Sr.G. and Navaneethakrishnan, K. (2003), "Effects of electric field and hydrostatic pressure on donor binding energies in a spherical quantum dot", Solid State Commun., 126(12), 681-685.   DOI
30 Karabulut, İ. and Baskoutas, S. (2008), "Linear and nonlinear optical absorption coefficients and refractive index changes in spherical quantum dots: Effects of impurities, electric field, size, and optical intensity", J. Appl. Phys., 103(7), 073512.   DOI
31 Karabulut, I. and Baskoutas, S. (2009), "Second and third harmonic generation susceptibilities of spherical quantum dots: Effects of impurities, electric field and size", J. Comput. Theor. Nanosci., 6(1), 153-156.   DOI
32 Karabulut, İ., Atav, Ü., Sąfak, H. and Tomak, M. (2007), "Linear and nonlinear intersubb and optical absorptions in an asymmetric rectangular quantum well", Eur. Phys. J. B, 55(3), 283-288.   DOI
33 Khordad, R. and Bahramiyan, H. (2015), "Impurity position effect on optical properties of various quantum dots", Physica E, 66, 107-115.   DOI
34 Kasapoglu, E., Ungan, F., Sari, H., Sӧ kmen, I., Mora-Ramos, M.E. and Duque, C.A. (2014), "Donor impurity states and related optical responses in triangular quantum dots under applied electric field", Superlattices Microst., 73, 171-184.   DOI
35 Khordad, R. (2010), "Effects of position-dependent effective mass of a hydrogenic donor impurity in a ridge quantum wire", Physica E, 42(5), 1503-1508.   DOI
36 Khordad, R. (2011), "Effect of position-dependent effective mass on linear and nonlinear optical properties of a cubic quantum dot", Physica B, 406(20), 3911-3916.   DOI
37 Kӧksal, M., Kilicarslan, E., Sari, H. and Sӧkmen, I. (2009), "Magnetic-field effect on the diamagnetic susceptibility of hydrogenic impurities in quantum well-wires", Physica B, 404(21), 3850-3854.   DOI
38 Kumar, K.M., Peter, A.J. and Lee, C.W. (2012), "Optical properties of a hydrogenic impurity in a confined $Zn_{1-x}CdxSe/ZnSe$ quantum dot", Superlattices Microst., 51(1), 184-193.   DOI
39 Li, Y.-X., Liu, J.-J. and Kang, X.-J. (2000), "The effect of a spatially dependent effective mass on hydrogenic impurity binding energy in a finite parabolic quantum well", J. Appl. Phys., 88(5), 2588-2592.   DOI
40 Latha, M., Rajashabala, S. and Navaneethakrishnan, K. (2006), "Effect of dielectric screening on the binding energies and diamagnetic susceptibility of a donor in a quantum well wire", Phys. Status Solidi B, 243(6), 1219-1228.   DOI
41 Mughnetsyan, V.N., Barseghyan, M.G. and Kirakosyan, A.A. (2008), "Binding energy and photoionization cross section of hydrogen-like donor impurity in quantum well-wire in electric and magnetic fields", Superlattices Microst., 44(1), 86-95.   DOI
42 Ozmen, A., Yakar, Y., Cakir, B. and Atav, U. (2009), "Computation of the oscillator strength and absorption coefficients for the intersubband transitions of the spherical quantum dot", Optics Commun., 282(19), 3999-4004.   DOI
43 Naimi, Y., Vahedi, J. and Soltani, M.R. (2015), "Effect of position-dependent effective mass on optical properties of spherical nanostructures", Opt. Quant. Electron., 47(8), 2947-2956.   DOI
44 Niculescu, E.C. (2011), "Dielectric mismatch effect on the photo-ionization cross section and intersublevel transitions in GaAs nanodots", Optics Commun., 284(13), 3298-3303.   DOI
45 Niculescu, E.C., Burileanu, L.M., Radu, A. and Lupascu, A. (2011), "Anisotropic optical absorption in quantum well wires induced by high-frequency laser fields", J. Lumin., 131(6), 1113-1120.   DOI
46 Peter, A.J. (2009), "The effect of position-dependent effective mass of hydrogenic impurities in parabolic GaAs/GaAlAs quantum dots in a strong magnetic field", Int. J. Mod. Phys. B, 23(26), 5109-5118.   DOI
47 Rajashabala, S. and Navaneethakrishnan, K. (2007), "Effective masses for donor binding energies in nonmagnetic and magnetic quantum well systems: Effect of magnetic field", Braz. J. Phys., 37(3B), 1134-1140.   DOI
48 Peter, A.J. and Navaneethakrishnan, K. (2008), "Effects of position-dependent effective mass and dielectric function of a hydrogenic donor in a quantum dot", Physica E, 40(8), 2747-2751.   DOI
49 Qi, X.-H., Kang, X.-J. and Liu, J.-J. (1998), "Effect of a spatially dependent effective mass on the hydrogenic impurity binding energy in a finite parabolic quantum well", Phys. Rev. B, 58(16), 10578-10582.   DOI
50 Rajashabala, S. and Navaneethakrishnan, K. (2006), "Effective masses for donor binding energies in quantum well systems", Mod. Phys. Lett. B, 20(24), 1529-1541.   DOI