References
- M. Ben Chrouda, M. El Ouled, and H. Ouerdiane, Quantum stochastic processes and applications, Quantum probability and infinite dimensional analysis, 115-125, QP-PQ: Quantum Probab. White Noise Anal., 18, World Sci. Publ., Hackensack, NJ, 2005.
- D. M. Chung and U. C. Ji, Transforms on white noise functionals with their applications to Cauchy problems, Nagoya Math. J. 147 (1997), 1-23. https://doi.org/10.1017/S0027763000006292
- D. M. Chung and U. C. Ji, Transformation groups on white noise functionals and their applications, Appl. Math. Optim. 37 (1998), no. 2, 205-223. https://doi.org/10.1007/s002459900074
- D. M. Chung, U. C. Ji, and N. Obata, Quantum stochastic analysis via white noise operators in weighted Fock space, Rev. Math. Phys. 14 (2002), no. 3, 241-272. https://doi.org/10.1142/S0129055X0200117X
- T. Hida, Analysis of Brownian Functionals, Carleton Math. Lect. Notes no. 13, Carleton University, Ottawa, 1975.
- R. L. Hudson and K. R. Parthasarathy, Quantum Ito's formula and stochastic evolu- tions, Comm. Math. Phys. 93 (1984), no. 3, 301-323. https://doi.org/10.1007/BF01258530
- U. C. Ji, Quantum extensions of Fourier-Gauss and Fourier-Mehler transforms, J. Korean Math. Soc. 45 (2008), no. 6, 1785-1801. https://doi.org/10.4134/JKMS.2008.45.6.1785
- U. C. Ji and N. Obata, Quantum white noise calculus, in "Non-Commutativity, Infinite- Dimensionality and Probability at the Crossroads (N. Obata, T. Matsui and A. Hora, Eds.)," pp. 143-191, World Scientific, 2002.
- U. C. Ji and N. Obata, A unified characterization theorem in white noise theory, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 6 (2003), no. 2, 167-178. https://doi.org/10.1142/S0219025703001122
- U. C. Ji and N. Obata, Annihilation-derivative, creation-derivative and representation of quantum martingales, Comm. Math. Phys. 286 (2009), no. 2, 751-775. https://doi.org/10.1007/s00220-008-0702-3
- H.-H. Kuo, White Noise Distribution Theory, CRC Press, 1996.
- P.-A. Meyer, Quantum Probability for Probabilists, Lect. Notes in Math. Vol. 1538, Springer-Verlag, 1993.
- N. Obata, White Noise Calculus and Fock Space, Lect. Notes in Math. Vol. 1577, Springer-Verlag, 1994.
- N. Obata, An analytic characterization of symbols of operators on white noise functionals, J. Math. Soc. Japan 45 (1993), no. 3, 421-445. https://doi.org/10.2969/jmsj/04530421
- K. R. Parthasarathy, An Introduction to Quantum Stochastic Calculus, Birkhauser, 1992.
Cited by
- YEH CONVOLUTION OF WHITE NOISE FUNCTIONALS vol.31, pp.5_6, 2013, https://doi.org/10.14317/jami.2013.825
- STOCHASTIC DIFFERENTIAL EQUATION FOR WHITE NOISE FUNCTIONALS vol.29, pp.2, 2016, https://doi.org/10.14403/jcms.2016.29.2.337
- Factorization property of convolutions of white noise operators vol.46, pp.4, 2015, https://doi.org/10.1007/s13226-015-0146-3