• 제목/요약/키워드: quantum group

검색결과 180건 처리시간 0.034초

QUANTUM MARKOVIAN SEMIGROUPS ON QUANTUM SPIN SYSTEMS: GLAUBER DYNAMICS

  • Choi, Veni;Ko, Chul-Ki;Park, Yong-Moon
    • 대한수학회지
    • /
    • 제45권4호
    • /
    • pp.1075-1087
    • /
    • 2008
  • We study a class of KMS-symmetric quantum Markovian semigroups on a quantum spin system ($\mathcal{A},{\tau},{\omega}$), where $\mathcal{A}$ is a quasi-local algebra, $\tau$ is a strongly continuous one parameter group of *-automorphisms of $\mathcal{A}$ and $\omega$ is a Gibbs state on $\mathcal{A}$. The semigroups can be considered as the extension of semi groups on the nontrivial abelian subalgebra. Let $\mathcal{H}$ be a Hilbert space corresponding to the GNS representation con structed from $\omega$. Using the general construction method of Dirichlet form developed in [8], we construct the symmetric Markovian semigroup $\{T_t\}{_t_\geq_0}$ on $\mathcal{H}$. The semigroup $\{T_t\}{_t_\geq_0}$ acts separately on two subspaces $\mathcal{H}_d$ and $\mathcal{H}_{od}$ of $\mathcal{H}$, where $\mathcal{H}_d$ is the diagonal subspace and $\mathcal{H}_{od}$ is the off-diagonal subspace, $\mathcal{H}=\mathcal{H}_d\;{\bigoplus}\;\mathcal{H}_{od}$. The restriction of the semigroup $\{T_t\}{_t_\geq_0}$ on $\mathcal{H}_d$ is Glauber dynamics, and for any ${\eta}{\in}\mathcal{H}_{od}$, $T_t{\eta}$, decays to zero exponentially fast as t approaches to the infinity.

Anchoring Cadmium Chalcogenide Quantum Dots (QDs) onto Stable Oxide Semiconductors for QD Sensitized Solar Cells

  • Lee, Hyo-Joong;Kim, Dae-Young;Yoo, Jung-Suk;Bang, Ji-Won;Kim, Sung-Jee;Park, Su-Moon
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권6호
    • /
    • pp.953-958
    • /
    • 2007
  • Anchoring quantum dots (QDs) onto thermodynamically stable, large band gap oxide semiconductors is a very important strategy to enhance their quantum yields for solar energy conversion in both visible and near-IR regions. We describe a general procedure for anchoring a few chalcogenide QDs onto the titanium oxide layer. To anchor the colloidal QDs onto a mesoporous TiO2 layer, linker molecules containing both carboxylate and thiol functional groups were initially attached to TiO2 layers and subsequently used to capture dispersed QDs with the thiol group. Employing the procedure, we exploited cadmium selenide (CdSe) and cadmium telluride (CdTe) quantum dots (QDs) as inorganic sensitizers for a large band gap TiO2 layer of dye-sensitized solar cells (DSSCs). Their attachment was confirmed by naked eyes, absorption spectra, and photovoltaic effects. A few QD-TiO2 systems thus obtained have been characterized for photoelectrochemical solar energy conversion.

황화납 양자점 감지막을 통해 감도가 개선된 수소센서 (Sensitivity enhancement of H2 gas sensor using PbS quantum dots)

  • 김세완;김나리;권진범;김재건;정동건;공성호;정대웅
    • 센서학회지
    • /
    • 제29권6호
    • /
    • pp.388-393
    • /
    • 2020
  • In this study, a PbS quantum dots (QDs)-based H2 gas sensor with a Pd electrode was proposed. QDs have a size of several nanometers, and they can exhibit a high surface area when forming a thin film. In particular, the NH2 present in the ligand of PbS QDs and H2 gas are combined to form NH3+, subsequently the electrical characteristics of the QDs change. In addition to the resistance change owing to the reaction between Pd and H2 gas, the resistance change owing to the reaction between the NH2 of PbS QDs and H2 gas increases the current signal at the sensor output, which can produce a high output signal for the same concentration of H2 gas. Using the XRD and absorbance properties, the synthesis and particle size of the synthesized PbS QDs were analyzed. Using PbS QDs, the sensitivity was significantly improved by 44%. In addition, the proposed H2 gas sensor has high selectivity because it has low reactivity with heterogeneous gases such as C2H2, CO2, and CH4.

Adsorption behavior of platinum-group metals and Co-existing metal ions from simulated high-level liquid waste using HONTA and Crea impregnated adsorbent

  • Naoki Osawa;Seong-Yun Kim;Masahiko Kubota;Hao Wu;Sou Watanabe;Tatsuya Ito;Ryuji Nagaishi
    • Nuclear Engineering and Technology
    • /
    • 제56권3호
    • /
    • pp.812-818
    • /
    • 2024
  • The volume and toxicity of radioactive waste can be decreased by separating the components of high-level liquid waste according to their properties. An impregnated silica-based adsorbent was prepared in this study by combining N,N,N',N',N",N"-hexa-n-octylnitrilotriacetamide (HONTA) extractant, N',N'-di-n-hexyl-thiodiglycolamide (Crea) extractant, and macroporous silica polymer composite particles (SiO2-P). The performance of platinum-group metals adsorption and separation on prepared (HONTA + Crea)/SiO2-P adsorbent was then assessed together with that of co-existing metal ions by batch-adsorption and chromatographic separation studies. From the batch-adsorption experiment results, (HONTA + Crea)/SiO2-P adsorbent showed high adsorption performance of Pd(II) owing to an affinity between Pd(II) and Crea extractant based on the Hard and Soft Acids and Bases theory. Additionally, significant adsorption performance was observed toward Zr(IV) and Mo(VI). Compared with studies using the Crea extractant, the high adsorption performance of Zr(IV) and Mo(VI) is attributed to the HONTA extractant. As revealed from the chromatographic experiment results, most of Pd(II) was recovered from the feed solution using 0.2 M thiourea in 0.1 M HNO3. Additionally, the possibility of recovery of Zr(IV), Mo(VI), and Re(VII) was observed using the (HONTA + Crea)/SiO2-P adsorbent.

양자화학적 계산에 의한 살리씰산유도체의 정량적 구조-활성 상관관계 (Quantitative Structure-Activity Relationships of Salicylic Acid Derivatives by Quantum Chemical Calculations)

  • 이종달
    • 약학회지
    • /
    • 제32권1호
    • /
    • pp.80-85
    • /
    • 1988
  • QSAR of Salicylic acid derivatives, as anti-inflammatory agent, classified into Group I (not-having-5-phenyl ones) and Group II (having-5-phenyl ones) were investigated by quantum chemical calculations. The results are below: not significant statistically for both of Group I and Group II, but significant for each Group. $potency=-8.46X_{5}+1.639\;n=5\;r=0.77\;se=0.31\;for\;Group\;I.$ $({\pm}4.05)\;({\pm}0.5)$ where $X_5$ means charge of carbon atom bonded to hydroxyl radical. $potency=0.16X_{19}+7427.38HO-6629.85X_{15}+4977.40X_{10}+351.51X_5+3378.84$ $({\pm}0.17)\;({\pm}10.18)\;({\pm}11.70)\;({\pm}33.78)\;({\pm}4.41)\;({\pm}13.13)$ n=7 r=0.99 se=0.019 for Group II. where $X_{19}$ and $X_{15}$ stand for charges of the para carbon and the first carbon atoms in phenyl radical, respectively and $X_{10}$, charge of carboxylic carbon atom, HO, HOMO energy. It seems to be possible to qualitatively predict potency of drug by Pearson's HSAB theory. It means that drug should possess low LUMO energy and high HOMO energy.

  • PDF

Effect of thiophenol-based ligands on photoluminescence of quantum dot nanocrystals

  • Moon, Hyungseok;Jin, Hoseok;Kim, Bokyoung;Kang, Hyunjin;Kim, Daekyoung;Chae, Heeyeop
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.197-197
    • /
    • 2016
  • Quantum dot nanocrystals(QDs) have been emerged as next generation materials in the field of energy harvesting, sensor, and light emitting because of their compatibility with solution process and controllable energy band gap. Especially, characteristics of color tuning and color purity make it possible for QDs to be used photoluminescence materials. Photoluminescence devices with QDs have been researched for a long time. Photoluminescence quantum yield(PL QY) is important factor that defines the performance of Photoluminescence devices. One of the ways to achieve better PL QY is ligand modification. If ligands are changed to proper electron donating group, electrons can be confined in the core which results in enhancement of PL QY. Because of the reason, short ligands are preferred for enhancing PL QY. Thiophenol-based ligands are shorter than typical alkyl chain ligands. In this study, the effect of thiophenol-based ligands with different functional groups are investigated. Four different types of thiophenol-based organic materials are used as organic capping ligand. QDs with bare thiophenol and fluorothiophenol show better quantum yield compared to oleic acid.

  • PDF

뇌 컴퓨터단층검사 시 양자잡음제거 알고리즘을 적용한 영상의 비교평가 (Comparative Evaluation of Images after Applying Quantum Denoising System Algorithm to Brain Computed Tomography)

  • 조평곤
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제40권4호
    • /
    • pp.589-594
    • /
    • 2017
  • 본 연구의 목적은 뇌 컴퓨터단층검사 시 양자잡음제거(Quantum Denoising System; QDS) 알고리즘을 적용한 영상 분석을 통해 화질 향상 효과를 알아보고자 한다. 2017년 7월부터 2017년 10월까지 경북 소재 G 영상의학과에 뇌 컴퓨터단층검사를 위해 내원한 45명의 성인을 대상으로 동의하에 후향적 연구를 하였고, 뇌 컴퓨터단층검사 시 QDS(-)를 적용하지 않은 그룹(A Group)과 QDS(+)를 적용한 그룹(B Group)으로 나누어 검사하였다. 다음과 같은 결론을 얻었다. 노이즈값은 Pons부분과 Vermis부분 모두 QDS(+)를 적용한 B그룹에서 통계적으로 유의하게 낮았다(A Group; Pons $6.92{\pm}0.98HU$, Vermis 6.72, B Group; Pons $5.41{\pm}1.05HU$, Vermis $5.28{\pm}0.73HU$ : p<0.05). SNR값은 Pons부분과 Vermis 부분 모두 QDS(+)를 적용한 B그룹에서 통계적으로 유의하게 높았다(A Group; Pons $5.21{\pm}1.28$, Vermis $6.23{\pm}1.49$, B Group; Pons $7.28{\pm}2.56$, Vermis $8.63{\pm}3.04$ : p<0.05). 결론적으로 뇌 컴퓨터단층검사 시 양자잡음제거 알고리즘을 적용한다면 영상의 노이즈 감소 및 신호 대 잡음비(SNR), 대조도 대 잡음비(CNR)를 좀 더 개선시켜 진단에 적절한 영상을 얻을 수 있을 것으로 생각된다.