QUANTUM MARKOVIAN SEMIGROUPS ON QUANTUM SPIN SYSTEMS: GLAUBER DYNAMICS

VENI CHOI, CHUL KI KO, AND YONG MOON PARK

ABSTRACT. We study a class of KMS-symmetric quantum Markovian semigroups on a quantum spin system $(\mathcal{A},\tau,\omega)$, where \mathcal{A} is a quasi-local algebra, τ is a strongly continuous one parameter group of *-automorphisms of \mathcal{A} and ω is a Gibbs state on \mathcal{A} . The semigroups can be considered as the extension of semigroups on the nontrivial abelian subalgebra. Let \mathcal{H} be a Hilbert space corresponding to the GNS representation constructed from ω . Using the general construction method of Dirichlet form developed in [8], we construct the symmetric Markovian semigroup $\{T_t\}_{t\geq 0}$ on \mathcal{H} . The semigroup $\{T_t\}_{t\geq 0}$ acts separately on two subspaces \mathcal{H}_d and \mathcal{H}_{od} of \mathcal{H} , where \mathcal{H}_d is the diagonal subspace and \mathcal{H}_{od} is the off-diagonal subspace, $\mathcal{H}=\mathcal{H}_d\oplus\mathcal{H}_{od}$. The restriction of the semigroup $\{T_t\}_{t\geq 0}$ on \mathcal{H}_d is Glauber dynamics, and for any $\eta\in\mathcal{H}_{od}$, $T_t\eta$ decays to zero exponentially fast as t approaches to the infinity.

1. Introduction

A KMS symmetric quantum Markovian semigroup $\{S_t\}_{t\geq 0}$ on a von Neumann algebra \mathcal{M} is a KMS symmetric, weakly continuous, contractive and identity preserving semigroup on \mathcal{M} [6]. Quantum Markovian semigroups are the natural generalization of classical Markovian semigroups and were introduced in physics to model the decay equilibrium of quantum open systems [2, 3, 6, 8, 9].

Many mathematicians and physicists are interested to the problems whether quantum Markovian semigroups on the subalgebra of a von Neumann algebra or a C^* -algebra have their extensions on the full algebra. The problem of the extension was studied in [1, 5, 7]. In [5], authors constructed a special class of generic quantum Markovian semigroups arising in the stochastic limit of a discrete system with generic free Hamiltonian interacting with a mean zero, gauge invariant, Gaussian field, and studied its properties. The semigroups are constructed on the algebra B(h) of all bounded operators on a complex

Received December 1, 2006.

²⁰⁰⁰ Mathematics Subject Classification. 46L55, 37A60.

Key words and phrases. KMS symmetric quantum Markovian semigroups, quantum spin systems, diagonal subspace, Glauber dynamics.

separable Hilbert space h and leave invariant not only the diagonal subalgebra but also the off diagonal subspace with respect to a fixed basis of h. The action on diagonal operators describes a classical Markov jump process. Goderis and Maes [7] studied a quantum dynamical system which is an extension of the classical system such that the property of local reversibility is preserved.

Let \mathcal{M} be a von Neumann algebra acting on a complex Hilbert space \mathcal{H} and ξ_0 be a fixed cyclic and separating vector for \mathcal{M} . Let Δ and J be the modular operator and the modular conjugation associated with the pair (\mathcal{M}, ξ_0) [4]. Consider the symmetric embedding:

$$i_0: \mathcal{M} \longrightarrow \mathcal{H}, \quad i_0(A) = \Delta^{1/4} A \xi_0.$$

For a given KMS symmetric quantum Markovian semigroup $\{S_t\}_{t\geq 0}$ on \mathcal{M} , the semigroup $\{T_t\}_{t\geq 0}$ on \mathcal{H} defined by

$$T_t \circ i_0 = i_0 \circ S_t$$

is symmetric, strongly continuous, positive preserving, contractive and $T_t\xi_0 = \xi_0$ for all $t \geq 0$. The semigroup $\{T_t\}_{t\geq 0}$ is called a symmetric Markovian semigroup on \mathcal{H} . Conversely, for a given symmetric Markovian semigroup $\{T_t\}_{t\geq 0}$ on \mathcal{H} , the semigroup $\{S_t\}_{t\geq 0}$ on \mathcal{M} defined by

$$i_0 \circ S_t = T_t \circ i_0$$

is a KMS symmetric quantum Markovian semigroup. (See Theorem 2.11 and Theorem 2.12 of [6].)

The purpose of this paper is to study a class of KMS symmetric quantum Markovian semigroups on a quantum spin system $(\mathcal{A}, \tau, \omega)$, where \mathcal{A} is a quasi-local algebra, τ is a strongly continuous one parameter group of *-automorphisms of \mathcal{A} and ω is a Gibbs state on \mathcal{A} . The semigroups can be considered as the extension of semigroups on the nontrivial abelian subalgebra. Let \mathcal{H} be a Hilbert space corresponding to the GNS representation constructed from ω . Using the general construction method of Dirichlet forms developed in [8] (noncommutative Dirichlet form in the sense of Cipriani [6]), we construct the symmetric Markovian semigroup $\{T_t\}_{t\geq 0}$ on \mathcal{H} . The semigroup $\{T_t\}_{t\geq 0}$ acts separately on two subspaces \mathcal{H}_d and \mathcal{H}_{od} of \mathcal{H} , where \mathcal{H}_d is the diagonal subspace and \mathcal{H}_{od} is the off-diagonal subspace, $\mathcal{H} = \mathcal{H}_d \oplus \mathcal{H}_{od}$. The restriction of the semigroup $\{T_t\}_{t\geq 0}$ on \mathcal{H}_d is Glauber dynamics, and for any $\eta \in \mathcal{H}_{od}$, $T_t \eta$ decays to zero exponentially fast as $t \to \infty$.

This paper is organized as follows. In Section 2, we introduce a quantum spin system, and construct the symmetric Markovian semigroups by employing the general construction method of Dirichlet forms developed in [8] on standard forms of von Neumann algebras. In Section 3, we give the concrete action of the semigroup constructed in Section 2 and investigate some properties of the semigroup.

2. Quantum Markovian semigroups

In this section, we introduce a quantum spin system and construct the symmetric Markovian semigroup by employing the general construction method of Dirichlet forms developed in [8] on standard forms of von Neumann algebras.

Let $\mathbb{M}_2(\mathbb{C})$ be the algebra of 2×2 matrices with complex entries. Any 2×2 matrix is decomposed as a linear combination of the Pauli matrices S^0 , S^x , S^y , S^z defined by

$$S^0 = \mathbf{1} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \ S^x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \ S^y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \ S^z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

We define projection operators on \mathbb{C}^2 with an inner product (\cdot,\cdot) :

$$N = |u\rangle\langle u| = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \ \mathbf{1} - N = |d\rangle\langle d| = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix},$$

$$b=|d\rangle\langle u|=\begin{pmatrix}0&0\\1&0\end{pmatrix},\ b^*=|u\rangle\langle d|=\begin{pmatrix}0&1\\0&0\end{pmatrix},$$

where $u = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $d = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ and $|\eta\rangle\langle\xi|$ denotes the one rank operator on \mathbb{C}^2 such that $|\eta\rangle\langle\xi|\zeta = (\xi,\zeta)\eta$.

Let \mathcal{F} be the family of bounded sets in \mathbb{Z}^{ν} :

$$\mathcal{F} = \{ \Lambda \in \mathbb{Z}^{\nu} : \Lambda \text{ is finite} \}.$$

For each $\Lambda \in \mathcal{F}$, \mathcal{A}_{Λ} is the local C^* -algebra given by

$$\mathcal{A}_{\Lambda} = \bigotimes_{k \in \Lambda} \mathbb{M}_k,$$

where \mathbb{M}_k is an identical copy of $\mathbb{M}_2(\mathbb{C})$. We denote $\mathcal{A}_{\{k\}}$ by \mathcal{A}_k , $k \in \mathbb{Z}^{\nu}$. For $\Lambda_1, \Lambda_2 \in \mathcal{F}$, $\Lambda_1 \cap \Lambda_2 = \emptyset$, \mathcal{A}_{Λ_1} is isomorphic to the C^* -subalgebra $\mathcal{A}_{\Lambda_1} \otimes \mathbf{1}_{\Lambda_2}$ of $\mathcal{A}_{\Lambda_1 \cup \Lambda_2}$, where $\mathbf{1}_{\Lambda_2}$ denotes the identity operator of \mathcal{A}_{Λ_2} . We identify \mathcal{A}_{Λ_1} and $\mathcal{A}_{\Lambda_1} \otimes \mathbf{1}_{\Lambda_2}$. Then $\mathcal{A}_{\Lambda_1} \subset \mathcal{A}_{\Lambda_2}$ whenever $\Lambda_1 \subset \Lambda_2$, and $[A_1, A_2] = 0$, $A_1 \in \mathcal{A}_{\Lambda_1}$, $A_2 \in \mathcal{A}_{\Lambda_2}$ whenever $\Lambda_1 \cap \Lambda_2 = \emptyset$. Here [A, B] means AB - BA.

The quasi local algebra \mathcal{A} is defined as the uniform closure of \mathcal{A}_0 :

$$\mathcal{A}_{0} = \bigcup_{\Lambda \in \mathcal{F}} \mathcal{A}_{\Lambda},
\mathcal{A} = \overline{\mathcal{A}_{0}}.$$

For each $k \in \mathbb{Z}^{\nu}$, the elements S_k^x , S_k^y , S_k^z , N_k , b_k^* , b_k in \mathbb{M}_k are identical copies of S^x , S^y , S^z , N, b^* , b, respectively, and we write $A_k \otimes \mathbf{1}_{\{k\}^c} \in \mathcal{A}_k$ as A_k .

We consider the Ising Hamiltonian: for $\Lambda \in \mathcal{F}$,

$$(2.2) H_{\Lambda} = -\beta \sum_{\substack{\{k,l\} \subset \Lambda \\ |k-l|=1}} S_k^z S_l^z$$

$$= -\frac{\beta}{2} \sum_{l \in \Lambda} \sum_{\substack{k \in \Lambda \\ |k-l|=1}} S_k^z S_l^z,$$

where $\beta > 0$ is an inverse temperature. Clearly H_{Λ} is a self-adjoint element of \mathcal{A}_{Λ} . The time evolution τ_t is given by the strongly convergent limit of a one parameter semigroups τ_t^{Λ} on \mathcal{A}_{Λ} such that

(2.3)
$$\lim_{\Lambda \to \mathbb{Z}^{\nu}} \|\tau_t(A) - \tau_t^{\Lambda}(A)\|, \ A \in \mathcal{A},$$

where $\tau_t^{\Lambda}(A) = e^{-itH_{\Lambda}} A e^{itH_{\Lambda}}$, $A \in \mathcal{A}_{\Lambda}$, $t \in \mathbb{R}$. (See Theorem 6.2.4 and Theorem 6.2.6 of [4].)

For $\Lambda \in \mathcal{F}$, define the local Gibbs state ω_{Λ} on \mathcal{A}_{Λ} associated with H_{Λ} by

(2.4)
$$\omega_{\Lambda}(A) = \operatorname{Tr}(\rho_{\Lambda}A), \ A \in \mathcal{A}_{\Lambda},$$

where $\rho_{\Lambda} = e^{H_{\Lambda}}/\text{Tr}(e^{H_{\Lambda}})$. ω_{Λ} has an extension $\tilde{\omega}_{\Lambda}$ to a state on \mathcal{A} by Proposition 2.3.24 of [4]. Moreover there exist nets of extensions $\tilde{\omega}_{\Lambda_{\alpha}}$ of $\omega_{\Lambda_{\alpha}}$ such that $\tilde{\omega}_{\Lambda_{\alpha}}$ converges weakly* to a state ω on \mathcal{A} :

$$\lim_{\Lambda_{\alpha} \to \mathbb{Z}^{\nu}} \tilde{\omega}_{\Lambda_{\alpha}}(A) = \omega(A)$$

for all $A \in \mathcal{A}$. Hence ω is a thermodynamic limit point of the local Gibbs states in the sense that

$$\omega(A) = \lim_{\alpha} \omega_{\Lambda_{\alpha}}(A)$$

for all $A \in \mathcal{A}_{\Lambda}$ and all $\Lambda \in \mathcal{F}$. The thermodynamic limit ω is a τ -KMS state on \mathcal{A} (Proposition 6.2.15 of [4]).

Let $(\mathcal{H}_{\omega}, \pi_{\omega}, \Omega_{\omega})$ be the GNS-representation (or cyclic representation) of (\mathcal{A}, ω) [4]. Throughout this paper, we write that $\mathcal{H} = \mathcal{H}_{\omega}$, $\xi_0 = \Omega_{\omega}$, $\mathcal{M}_{\Lambda} = \pi_{\omega}(\mathcal{A}_{\Lambda})$, $\mathcal{M} = \pi_{\omega}(\mathcal{A})''$ and $\tau_t^{\omega} = \pi_{\omega} \circ \tau_t$. To simplify the notations, we will omit π_{ω} such that $S_k^z := \pi_{\omega}(S_k^z)$, etc. Denote by $\langle \cdot, \cdot \rangle$ the inner product of \mathcal{H} . Let σ_t , $t \in \mathbb{R}$, be the modular automorphism with respect to ω and Δ and J be the modular operator and modular conjugation associated to the pair (\mathcal{M}, ξ_0) [4], respectively. By Theorem 5.3.10 of [4], $\sigma_t = \tau_t^{\omega}$ and $\sigma_t(A) = \Delta^{it} A \Delta^{-it}$, $A \in \mathcal{M}$. Let \mathcal{M}' be the commutant of \mathcal{M} . The map $j : \mathcal{M} \to \mathcal{M}'$ is the anti-linear *-isomorphism defined by j(A) = JAJ, $A \in \mathcal{M}$.

To construct a generator of a symmetric Markovian semigroup on \mathcal{H} , we introduce an (normalized) admissible function [8].

Definition 2.1. An analytic function $f: D \to \mathbb{C}$ on a domain D containing the strip $I_{1/4} = \{z \mid |\operatorname{Im} z| \leq 1/4\}$ is said to be admissible if the following properties hold:

- (a) $f(t) \geq 0$ for all $t \in \mathbb{R}$,
- (b) $f(t+i/4) + f(t-i/4) \ge 0$ for all $t \in \mathbb{R}$,
- (c) there exist M > 0 and p > 1 such that the bound

$$|f(t+is)| \le M(1+|t|)^{-p}$$

holds uniformly in $s \in [-1/4, 1/4]$.

Moreover, if $\int f(t)dt = 1$ then it is called a normalized admissible function.

The function

$$g(t) = \frac{2}{\sqrt{2\pi}} \int (e^{k/4} + e^{-k/4})^{-1} e^{-\frac{1}{2}k^2} e^{-ikt} dk$$

is admissible. (See Lemma 3.1 of [8].)

For a fixed normalized admissible function f, we define an operator H on \mathcal{H} by

(2.5)
$$D(H) = \{ \xi \in \mathcal{H} : \sum_{k \in \mathbb{Z}^{\nu}} ||H_k \xi||^2 < \infty \},$$

$$H\xi = \sum_{k \in \mathbb{Z}^{\nu}} H_k \xi, \ \xi \in D(H),$$

where

(2.6)
$$H_{k} = H_{k,1} + H_{k,2} + H_{k,3},$$

$$H_{k,l} = \int [\sigma_{t+i/4}(x_{k,l}^{*}) - j(\sigma_{t+i/4}(x_{k,l}))] \times [\sigma_{t-i/4}(x_{k,l}) - j(\sigma_{t-i/4}(x_{k,l}^{*}))] f(t) dt$$

for $k \in \mathbb{Z}^{\nu}$, l = 1, 2, 3 and $x_{k,1} = b_k^*$, $x_{k,2} = b_k$, $x_{k,3} = N_k$.

Theorem 2.2. Let H be an operator defined as in (2.5) and (2.6). Then it is a generator of a strongly continuous, symmetric Markovian semigroup $\{T_t\}_{t>0}$, $T_t = e^{-tH}$ on \mathcal{H} .

Proof. By Theorem 2.1 of [3], for each $k \in \mathbb{Z}^{\nu}$, H_k is a (bounded) generator of a strongly continuous, symmetric Markovian semigroup on \mathcal{H} . See also Theorem 3.1 of [8]. Clearly $\mathcal{M}_{\Lambda}\xi_0 \subset D(H)$ for any $\Lambda \in \mathcal{F}$, and so H is densely defined. Since H is a symmetric operator on \mathcal{H} it has a closed extension, denoted by H again. By Theorem 5.2 of [6], H is a generator of a strongly continuous, symmetric Markovian semigroup $\{T_t\}_{t\geq 0}$, $T_t=e^{-tH}$ on \mathcal{H} .

3. Action of the generator H

In this section, we introduce two subspaces of \mathcal{H} , the diagonal subspace \mathcal{H}_d and the off-diagonal subspace \mathcal{H}_{od} , $\mathcal{H} = \mathcal{H}_d \oplus \mathcal{H}_{od}$, and investigate the concrete action of the generator H of the semigroup $\{T_t\}_{t\geq 0}$ constructed in Theorem 2.2 on \mathcal{H}_d and \mathcal{H}_{od} , respectively.

We first give elementary facts.

Lemma 3.1. (a) The following relations hold: for any $k \in \mathbb{Z}^{\nu}$

$$(3.1) (S_k^z)^2 = 1, b_k^2 = (b_k^*)^2 = 0,$$

(3.2)
$$b_k b_k^* = (\mathbf{1} - N)_k = -S_k^z (1 - N)_k, \ b_k^* b_k = N_k = S_k^z N_k,$$

(3.3)
$$b_k^* S_k^z = -S_k^z b_k^* = -b_k^*, \quad b_k S_k^z = -S_k^z b_k = b_k,$$

$$(3.4) [S_k^z, b_k^*] = 2b_k^*, [S_k^z, b_k] = -2b_k.$$

(b) The actions of modular operator σ_t

(3.5)
$$\sigma_t(b_k^*) = \exp(i\beta t \sum_{\substack{l \in \mathbb{Z}^{\nu} \\ |l-k|=1}} S_l^z) b_k^*,$$

$$\sigma_t(b_k) = \exp(-i\beta t \sum_{\substack{l \in \mathbb{Z}^{\nu} \\ |l-k|=1}} S_l^z) b_k,$$

$$\sigma_t(N_k) = N_k$$

hold for any $k \in \mathbb{Z}^{\nu}$ and $t \in \mathbb{R}$.

Remark 3.2. In fact, the relations (3.5) hold for all $t \in \mathbb{C}$. (See Proposition 2.5.22 of [4].)

Proof of Lemma 3.1. (a) This directly follows from the definitions of b_k^* , b_k , N_k and S_k^z for any $k \in \mathbb{Z}^{\nu}$.

(b) Notice that for $A \in \mathcal{M}_{\Lambda}$, $\Lambda \in \mathcal{F}$

(3.6)
$$\delta(A) := \frac{d}{dt} \sigma_t(A) |_{t=0}$$
$$= -i[H_{\Lambda'}, A], \ \Lambda \subset \Lambda'.$$

Choosing $A = b_k^*$ in (3.6), we have

$$\delta(b_k^*) = \frac{i\beta}{2} \sum_{\substack{l \in \mathbb{Z}^\nu \\ |l-k|=1}} S_l^z [S_k^z, b_k^*]$$
$$= i\beta \sum_{\substack{l \in \mathbb{Z}^\nu \\ |l-k|=1}} S_l^z b_k^*.$$

Here we have used (3.4) in the second equality. Thus we get

$$\sigma_t(b_k^*) = \exp(i\beta t \sum_{\substack{l \in \mathbb{Z}^\nu \\ |l-k| = 1}} S_l^z) b_k^*.$$

The other relations are obtained by the similar calculation.

We define a (diagonal) subalgebra \mathcal{M}_d of \mathcal{M} , and two Hilbert spaces \mathcal{H}_d and \mathcal{H}_{od} called the diagonal subspace and the off-diagonal subspace, respectively:

$$\mathcal{M}_d := \text{the subalgebra generated by } \{S_k^z : k \in \mathbb{Z}^{\nu}\},$$

 $\mathcal{H}_d := \text{the closure of } \mathcal{M}_d \xi_0 = \{A\xi_0 : A \in \mathcal{M}_d\} \text{ in } \mathcal{H},$
 $\mathcal{H}_{od} := \text{the orthogonal complement } \mathcal{H}_d^{\perp} \text{ of } \mathcal{H}_d.$

Remark 3.3. (1) Since $S_k^z = N_k - (1 - N)_k$, $k \in \mathbb{Z}^{\nu}$ and $\sigma_t(N_k) = N_k$, \mathcal{M}_d is the centerizer of σ_t in the sense that $\sigma_t(\mathcal{M}_d) = \mathcal{M}_d$ for all $t \in \mathbb{R}$.

(2) Since $(S_k^z)^2 = 1$ for $k \in \mathbb{Z}^{\nu}$, the subspace generated by the vectors of the form

$$\eta_{\Lambda} := (\prod_{k \in \Lambda} S_k^z) \xi_0, \, \Lambda \in \mathcal{F}$$

is dense in \mathcal{H}_d .

- (3) $\mathcal{H} = \mathcal{H}_d \oplus \mathcal{H}_{od}$.
- (4) $\mathcal{M}_d \mathcal{H}_d \subset \mathcal{H}_d$.

Theorem 3.4 (Action of the generator H on \mathcal{H}_d). For each $k \in \mathbb{Z}^{\nu}$, let H_k be defined as in (2.6). Then it acts on \mathcal{H}_d as follows: for any $\eta_{\Lambda} = (\prod_{l \in \Lambda} S_l^z) \xi_0 \in \mathcal{H}_d$, $\Lambda \in \mathcal{F}$,

(3.7)
$$H_k \eta_{\Lambda} = \begin{cases} 4 \exp\left(-\frac{\beta}{2} \sum_{\substack{l \in \mathbb{N}^{\nu} \\ |l-k|=1}} S_k^z S_l^z\right) \eta_{\Lambda} & \text{if } k \in \Lambda \\ 0 & \text{if } k \notin \Lambda. \end{cases}$$

Remark 3.5. (1) $T_t \mathcal{H}_d \subset \mathcal{H}_d$ for all $t \in \mathbb{R}$

(2) For a fixed $k \in \mathbb{Z}^{\nu}$, let $\eta = g(S_k^z, S_l^z; l \in \mathbb{Z}^{\nu} \setminus \{k\})\xi_0$ and $\eta^{(k)} = g(-S_k^z, S_l^z; l \in \mathbb{Z}^{\nu} \setminus \{k\})\xi_0$, where g is continuous as a function on \mathbb{R}^2 . Then

$$\eta - \eta^{(k)} = \begin{cases} 2\eta & \text{if } g \text{ is odd for } S_k^z \\ 0 & \text{if } g \text{ is even for } S_k^z. \end{cases}$$

The expression (3.7) is rewritten as

$$H_k \eta = 2 \exp \left(-\frac{\beta}{2} \sum_{\substack{l \in \mathbb{Z}^{\nu} \\ |l-k| \equiv 1}} S_k^z S_l^z \right) (\eta - \eta^{(k)}).$$

This is the Glauber dynamics.

Proof of Theorem 3.4. Let $\eta_{\Lambda} = (\prod_{l \in \Lambda} S_l^z) \xi_0 \in \mathcal{H}_d$, $\Lambda \in \mathcal{F}$. Since for fixed $k \in \Lambda$, $\prod_{\substack{l \in \Lambda \\ l \neq k}} S_l^z$ commutes with H_k by (3.5) and the definition of H_k in (2.6), we consider only

$$\eta = S_k^z \xi_0 = \sigma_{t-i/4}(S_k^z) \xi_0.$$

It follows from $[N_k, S_k^z] = 0$ that

(3.8)
$$H_{k,3} \eta = 0.$$

Next, we consider $H_{k,1} \eta$. By (3.4) and (3.5), we have

$$\begin{split} & [\sigma_{t-i/4}(b_k^*) - j(\sigma_{t-i/4}(b_k))]\eta \\ = & \sigma_{t-i/4}([b_k^*, S_k^z])\xi_0 \\ = & \sigma_{t-i/4}(-2b_k^*)\xi_0 \\ = & -2\exp\left((it + \frac{1}{4})\beta\sum_{\substack{l \in \mathbb{S}^\nu\\|l-k|=1}} S_l^z\right)b_k^*\xi_0 \end{split}$$

and so

$$[\sigma_{t+i/4}(b_k) - j(\sigma_{t+i/4}(b_k^*))][\sigma_{t-i/4}(b_k^*) - j(\sigma_{t-i/4}(b_k))]\eta$$

$$= -2\exp\left((it + \frac{1}{4})\beta \sum_{\substack{l \in \mathbb{Z}^{\nu} \\ |l-k|=1}} S_l^z\right)[\sigma_{t+i/4}(b_k)b_k^* - b_k^*j(\sigma_{t+i/4}(b_k^*))]\xi_0$$

$$= -2\left[\exp\left(\frac{\beta}{2} \sum_{\substack{l \in \mathbb{Z}^{\nu} \\ |l-k|=1}} S_l^z\right)b_kb_k^* - \exp\left(-\frac{\beta}{2} \sum_{\substack{l \in \mathbb{Z}^{\nu} \\ |l-k|=1}} S_l^z\right)b_k^*b_k\right]\xi_0$$

$$(3.9) = -2\exp\left(\frac{\beta}{2} \sum_{\substack{l \in \mathbb{Z}^{\nu} \\ |l-k|=1}} S_l^z\right)(1-N)_k\xi_0 + 2\exp\left(-\frac{\beta}{2} \sum_{\substack{l \in \mathbb{Z}^{\nu} \\ |l-k|=1}} S_l^z\right)N_k\xi_0.$$

Here we have used $j(\sigma_{t+i/4}(b_k^*))\xi_0 = \sigma_{t-3i/4}(b_k)\xi_0$ and (3.5) in the second equality and (3.2) in the third equality.

Notice that by (3.1) and (3.2)

(3.10)
$$\exp\left(\frac{\beta}{2} \sum_{\substack{l \in \mathbb{Z}^{\nu} \\ |l-k|=1}} S_{l}^{z}\right) (\mathbf{1} - N)_{k} = \exp\left(-\frac{\beta}{2} \sum_{\substack{l \in \mathbb{Z}^{\nu} \\ |l-k|=1}} S_{k}^{z} S_{l}^{z}\right) (\mathbf{1} - N)_{k},$$
$$\exp\left(-\frac{\beta}{2} \sum_{\substack{l \in \mathbb{Z}^{\nu} \\ |l-k|=1}} S_{k}^{z} S_{l}^{z}\right) N_{k} = \exp\left(-\frac{\beta}{2} \sum_{\substack{l \in \mathbb{Z}^{\nu} \\ |l-k|=1}} S_{k}^{z} S_{l}^{z}\right) N_{k}.$$

Substituting (3.10) into (3.9), we get

$$\begin{split} & [\sigma_{t+i/4}(b_k) - j(\sigma_{t+i/4}(b_k^*))][\sigma_{t-i/4}(b_k^*) - j(\sigma_{t-i/4}(b_k))]\eta \\ &= -2\exp\big(-\frac{\beta}{2}\sum_{\substack{l\in\mathbb{Z}^\nu\\|l-k|=1}}S_k^zS_l^z\big)(1-N)_k\xi_0 + 2\exp\big(-\frac{\beta}{2}\sum_{\substack{l\in\mathbb{Z}^\nu\\|l-k|=1}}S_k^zS_l^z\big)N_k\xi_0 \\ &= 2\exp\big(-\frac{\beta}{2}\sum_{\substack{l\in\mathbb{Z}^\nu\\|l-k|=1}}S_k^zS_l^z\big)S_k^z\xi_0 \\ &= 2\exp\big(-\frac{\beta}{2}\sum_{\substack{l\in\mathbb{Z}^\nu\\|l-k|=1}}S_k^zS_l^z\big)\eta. \end{split}$$

Thus for $\eta_{\Lambda} = (\prod_{l \in \Lambda} S_l^z) \xi_0$, since $\int f(t) dt = 1$, we have

(3.11)
$$H_{k,1} \eta_{\Lambda} = \begin{cases} 2 \exp\left(-\frac{\beta}{2} \sum_{\substack{l \in \mathbb{Z}^{\nu} \\ |l-k|=1}} S_{k}^{z} S_{l}^{z}\right) \eta_{\Lambda} & \text{if } k \in \Lambda \\ 0 & \text{if } k \notin \Lambda. \end{cases}$$

By the similar calculation we can also check

(3.12)
$$H_{k,2} \eta_{\Lambda} = H_{k,1} \eta_{\Lambda}.$$

The relation (3.7) follows from (3.8), (3.11) and (3.12). The proof is completed.

In the rest of this paper, b_k^{\sharp} is either b_k^{*} or b_k . Recall that

$$(S_k^z)^2 = \mathbf{1}, \ b_k^2 = (b_k^*)^2 = 0, \ b_k^* b_k = N_k = \frac{1}{2} (\mathbf{1} + S_k^z), \ \text{etc.}$$

Let $A \in \mathcal{M}$ be a monomial in the algebra generated by $\{b_k, b_k^*, S_k^z : k \in \mathbb{Z}^{\nu}\}$. Then $A\xi_0$ can be written as a linear combination of the vectors of the form

$$\eta_{\Lambda_1,\Lambda_2} := (\prod_{l \in \Lambda_2} b_l^{\sharp}) (\prod_{m \in \Lambda_1} S_m^z) \xi_0,$$

where Λ_1 , $\Lambda_2 \in \mathcal{F}$ are disjoint. Clearly the family of the above vectors is dense in \mathcal{H} . Recall that the diagonal subspace \mathcal{H}_d is spanned by the vectors of the form $\eta_{\Lambda,\emptyset} := \eta_{\Lambda} = (\prod_{l \in \Lambda} S_l^z) \xi_0$, $\Lambda \in \mathcal{F}$.

Lemma 3.6. (a) The Hilbert space \mathcal{H}_{od} is the closure of the subspace spanned by the vectors of the form

$$\eta_{\Lambda_1,\Lambda_2} = (\prod_{l \in \Lambda_2} b_l^{\sharp}) (\prod_{m \in \Lambda_1} S_m^z) \xi_0,$$

where $\Lambda_1, \Lambda_2 \in \mathcal{F}$ are disjoint and $\Lambda_2 \neq \emptyset$.

(b) $\mathcal{M}_d \mathcal{H}_{od} \subset \mathcal{H}_{od}$.

Recall $\mathcal{M}_d \mathcal{H}_d \subset \mathcal{H}_d$ (Remark 3.3 (4)).

Proof of Lemma 3.6. (a) Let $\eta_{\Lambda_1,\Lambda_2} = (\prod_{l \in \Lambda_2} b_l^{\sharp})(\prod_{m \in \Lambda_1} S_m^z)\xi_0$ for $\Lambda_1, \Lambda_2 \in \mathcal{F}$, $\Lambda_1 \cap \Lambda_2 = \emptyset$ and $\Lambda_2 \neq \emptyset$. Notice that for any $\Lambda_3 \in \mathcal{F}$

$$\langle \eta_{\Lambda_3}, \eta_{\Lambda_1, \Lambda_2} \rangle = \langle \xi_0, (\prod_{l \in \Lambda_2} b_l^{\sharp}) (\prod_{m \in \Lambda_1 \triangle \Lambda_3} S_m^z) \xi_0 \rangle,$$

where we have used the KMS condition and $(S_k^z)^2 = 1$.

Since \mathcal{H}_d is spanned by the vectors of the form $(\prod_{l\in\Lambda} S_l^z)\xi_0$, $\Lambda\in\mathcal{F}$, it suffices to show that

(3.13)
$$\langle \xi_0, (\prod_{l \in \Lambda_2} b_l^{\sharp}) (\prod_{m \in \Lambda_1 \triangle \Lambda_3} S_m^z) \xi_0 \rangle = 0 \text{ for } \Lambda_2 \neq \emptyset.$$

Using the KMS condition, we have

$$\langle \xi_0, b_l^{\sharp} S_l^z \eta_{\Lambda_4, \Lambda_5} \rangle = \langle \xi_0, S_l^z b_l^{\sharp} \eta_{\Lambda_4, \Lambda_5} \rangle$$

for $l \notin \Lambda_4 \cup \Lambda_5$, $\Lambda_4 \cap \Lambda_5 = \emptyset$, $\Lambda_4, \Lambda_5 \in \mathcal{F}$, and so

$$\langle \xi_0, [b_l^{\sharp}, S_l^z] \eta_{\Lambda_4, \Lambda_5} \rangle = 0,$$

which implies (3.13). We obtain from (3.4) that

$$\langle \xi_0, b_l^{\sharp} \eta_{\Lambda_4, \Lambda_5} \rangle = 0 \text{ if } l \not\in \Lambda_4 \cup \Lambda_5.$$

The part (a) of lemma is proved.

(b) This follows from the facts $S_l^z b_l^* = b_l^*, \ S_l^z b_l = -b_l.$

Theorem 3.7 (Action of the generator H on \mathcal{H}_{od}). For each $k \in \mathbb{Z}^{\nu}$, let H_k be defined as in (2.6). Then it acts on \mathcal{H}_{od} as follows: for any

$$\eta_{\Lambda_1,\Lambda_2} = (\prod_{l \in \Lambda_2} b_l^{\sharp}) (\prod_{m \in \Lambda_1} S_m^z) \xi_0,$$

 $\Lambda_1, \ \Lambda_2 \in \mathcal{F}, \ \Lambda_1 \cap \Lambda_2 = \emptyset \ \text{and} \ \Lambda_2 \neq \emptyset,$ (3.14)

$$H_k \eta_{\Lambda_1,\Lambda_2} = \begin{cases} 0 & \text{if } k \notin \Lambda_1 \cup \Lambda_2, \\ \left[\mathbf{1} + 2\cosh(\frac{\beta}{2} \sum_{\substack{l \in \mathbb{Z}^{\nu} \\ |l-k|=1}} \varepsilon_l S_k^z S_l^z) \right] \eta_{\Lambda_1,\Lambda_2} & \text{if } k \in \Lambda_2, \\ 4\exp\left(-\frac{\beta}{2} \sum_{\substack{l \in \mathbb{Z}^{\nu} \\ |l-k|=1}} \varepsilon_l S_k^z S_l^z \right) \eta_{\Lambda_1,\Lambda_2} & \text{if } k \in \Lambda_1. \end{cases}$$

Here $\varepsilon_l = -1$ if $l \in \Lambda_2$ and $\varepsilon_l = 1$ if $l \notin \Lambda_2$.

Proof. Let

$$\eta_{\Lambda_1,\Lambda_2} = (\prod_{l \in \Lambda_2} b_l^\sharp) (\prod_{m \in \Lambda_1} S_m^z) \xi_0$$

for Λ_1 , $\Lambda_2 \in \mathcal{F}$, $\Lambda_1 \cap \Lambda_2 = \emptyset$ and $\Lambda_2 \neq \emptyset$. Recall that $\prod_{\substack{l \in \Lambda_1 \\ l \neq k}} S_l^z$ and $\prod_{\substack{l \in \Lambda_2 \\ l \neq k}} b_l^t$ commute with H_k . If $k \notin \Lambda_1 \cup \Lambda_2$, then

$$(3.15) H_k \eta_{\Lambda_1,\Lambda_2} = 0.$$

To prove the case $k \in \Lambda_2$, let

$$\eta_{\Lambda_1,\Lambda_2} = b_k^* (\prod_{\substack{l \in \Lambda_2 \\ l \in \Lambda_2}} b_l^\sharp) (\prod_{m \in \Lambda_1} S_m^z) \xi_0.$$

Since $[N_k, b_k^*] = b_k^*$ and $\int f(t)dt = 1$, it is easily checked that

$$(3.16) H_{k,3} \eta_{\Lambda_1,\Lambda_2} = \eta_{\Lambda_1,\Lambda_2}.$$

Also we get from the identity $(b_k^*)^2 = 0$ that

(3.17)
$$H_{k,1} \eta_{\Lambda_1,\Lambda_2} = 0.$$

Now, we calculate $H_{k,2} \eta_{\Lambda_1,\Lambda_2}$. We will again adopt the similar calculations used to get the relation (3.11) in the proof of Theorem 3.4. By (3.5) and $[b_k, b_k^*] = -S_k^z$, we have

$$\begin{aligned} & [\sigma_{t-i/4}(b_k) - j(\sigma_{t-i/4}(b_k^*))]b_k^* \xi_0 \\ &= \exp\left(-(it + \frac{1}{4})\beta \sum_{\substack{l \in \mathbb{Z}^{\nu} \\ |l-k|=1}} S_l^z\right)[b_k, b_k^*] \xi_0 \\ &= -\exp\left(-(it + \frac{1}{4})\beta \sum_{\substack{l \in \mathbb{Z}^{\nu} \\ |l-k|=1}} S_l^z\right) S_k^z \xi_0 \end{aligned}$$

and hence

$$\begin{split} & [\sigma_{t+i/4}(b_k^*) - j(\sigma_{t+i/4}(b_k))][\sigma_{t-i/4}(b_k) - j(\sigma_{t-i/4}(b_k^*))]b_k^*\xi_0 \\ & = -\exp\big(-(it + \frac{1}{4})\beta\sum_{\stackrel{l \in \mathbb{D}^{\nu}}{|l-k|=1}} S_l^z\big)[\sigma_{t+i/4}(b_k^*)S_k^z - S_k^z j(\sigma_{t+i/4}(b_k))]\xi_0 \\ & = \left[-\exp\big(-\frac{\beta}{2}\sum_{\stackrel{l \in \mathbb{D}^{\nu}}{|l-k|=1}} S_l^z\big)b_k^*S_k^z + \exp\big(\frac{\beta}{2}\sum_{\stackrel{l \in \mathbb{D}^{\nu}}{|l-k|=1}} S_l^z\big)S_k^zb_k^*\big]\xi_0 \\ & = \exp\big(-\frac{\beta}{2}\sum_{\stackrel{l \in \mathbb{D}^{\nu}}{|l-k|=1}} S_k^zS_l^z\big)b_k^*\xi_0 + \exp\big(\frac{\beta}{2}\sum_{\stackrel{l \in \mathbb{D}^{\nu}}{|l-k|=1}} S_k^zS_l^z\big)b_k^*\xi_0 \\ & = \left[\exp\big(-\frac{\beta}{2}\sum_{\stackrel{l \in \mathbb{D}^{\nu}}{|l-k|=1}} S_k^zS_l^z\big) + \exp\big(\frac{\beta}{2}\sum_{\stackrel{l \in \mathbb{D}^{\nu}}{|l-k|=1}} S_k^zS_l^z\big)\right]b_k^*\xi_0, \end{split}$$

where we used (3.3) in the third equality.

Applying $b_k^{\sharp} \exp(\pm \frac{\beta}{2} S_k^z) = \exp(\mp \frac{\beta}{2} S_k^z) b_k^{\sharp}$ to the above, and since the function f(t) is normalized admissible, we have

$$H_{k,2}\eta_{\Lambda_{1},\Lambda_{2}} = \left[\exp\left(-\frac{\beta}{2}\sum_{\substack{l\in\mathbb{N}^{\nu}\\|l-k|=1}}\varepsilon_{l}S_{k}^{z}S_{l}^{z}\right) + \exp\left(\frac{\beta}{2}\sum_{\substack{l\in\mathbb{N}^{\nu}\\|l-k|=1}}\varepsilon_{l}S_{k}^{z}S_{l}^{z}\right)\right]\eta_{\Lambda_{1},\Lambda_{2}}$$

$$(3.18) = 2\cosh\left(\frac{\beta}{2}\sum_{\substack{l\in\mathbb{N}^{\nu}\\|l-k|=1}}\varepsilon_{l}S_{k}^{z}S_{l}^{z}\right)\eta_{\Lambda_{1},\Lambda_{2}},$$

where $\varepsilon_l = -1$ if $l \in \Lambda_2$ and $\varepsilon_l = 1$ if $l \notin \Lambda_2$.

For $\eta_{\Lambda_1,\Lambda_2} = b_k (\prod_{\substack{l \in \Lambda_2 \ l \neq k}} b_l^{\sharp}) (\prod_{m \in \Lambda_1} S_m^z) \xi_0$, the similar calculation as the above gives

(3.19)
$$H_{k,3} \eta_{\Lambda_1,\Lambda_2} = \eta_{\Lambda_1,\Lambda_2},$$

$$H_{k,1} \eta_{\Lambda_1,\Lambda_2} = 0,$$

$$H_{k,2} \eta_{\Lambda_1,\Lambda_2} = 2 \cosh\left(\frac{\beta}{2} \sum_{\substack{l \in \mathbb{Z}^{\nu} \\ |l-k|=1}} \varepsilon_l S_k^z S_l^z\right) \eta_{\Lambda_1,\Lambda_2}.$$

Hence we get

$$H_k \eta_{\Lambda_1,\Lambda_2} = \left[1 + 2 \cosh\left(\frac{\beta}{2} \sum_{\substack{l \in \mathbb{C}^{\nu} \\ |l-k|=1}} \varepsilon_l S_k^z S_l^z\right)\right] \eta_{\Lambda_1,\Lambda_2}.$$

Next, to prove the case $k \in \Lambda_1$, let

$$\eta_{\Lambda_1,\Lambda_2} = S_k^z (\prod_{l \in \Lambda_2} b_l^{\sharp}) (\prod_{\substack{m \in \Lambda_1 \\ m \neq k}} S_m^z) \xi_0.$$

By the similar calculation used to (3.16), (3.17) and (3.18), we have

(3.20)
$$H_{k,3} \eta_{\Lambda_{1},\Lambda_{2}} = 0,$$

$$H_{k,1} \eta_{\Lambda_{1},\Lambda_{2}} = H_{k,2} \eta_{\Lambda_{1},\Lambda_{2}}$$

$$= 2(\prod_{l \in \Lambda_{2}} b_{l}^{\sharp}) (\prod_{\substack{m \in \Lambda_{1} \\ l \in \Lambda_{2}}} S_{m}^{z}) \exp(-\frac{\beta}{2} \sum_{\substack{l \in \mathbb{Z}^{\nu} \\ k \neq l-1}} \varepsilon_{l} S_{k}^{z} S_{l}^{z}) S_{k}^{z} \xi_{0},$$

where ε_l is defined as in (3.18). Applying (3.3) to (3.21), we get

$$\begin{array}{lcl} H_{k,1}\,\eta_{\Lambda_1,\Lambda_2} & = & H_{k,2}\,\eta_{\Lambda_1,\Lambda_2} \\ & = & 2\exp(-\frac{\beta}{2}\sum_{\substack{l\in\mathbb{Z}^\nu\\|l-k|=1}}\varepsilon_lS_k^zS_l^z\big)\eta_{\Lambda_1,\Lambda_2}. \end{array}$$

Thus

$$H_k \eta_{\Lambda_1,\Lambda_2} = 4 \exp\left(-\frac{\beta}{2} \sum_{\substack{l \in \mathbb{D}^{\nu} \\ |l-k|=1}} \varepsilon_l S_k^z S_l^z\right) \eta_{\Lambda_1,\Lambda_2}.$$

The proof is completed.

Remark 3.8. (1) $T_t \mathcal{H}_{od} \subset \mathcal{H}_{od}$ for all $t \in \mathbb{R}$.

(2) For any $\eta \in \mathcal{H}_{od}$, $\langle \eta, H\eta \rangle \geq ||\eta||^2$. In particular, for any $\eta \in \mathcal{H}_{od}$, $T_t \eta$ decays to zero exponentially fast as $t \to \infty$.

References

- L. Accardi and S. Koyzyrev, Lectures on quantum interacting particle systems, Quantum interacting particle systems (Trento, 2000), 1-195, QP-PQ: Quantum Probab. White Noise Anal., 14, World Sci. Publ., River Edge, NJ, 2002.
- [2] S. Albeverio and R. Høegh-Krohn, Dirichlet forms and Markovian semigroups on C*-algebras, Comm. Math. Phys. 56 (1997), 173-187.
- [3] C. Bahn, C. K. Ko, and Y. M. Park, Dirichlet forms and symmetric Markovian semigroups on CCR algebras with respect to quasi-free states, J. Math. Phys. 44 (2003), no. 2, 723-753.
- [4] O. Bratteli and D. W. Robinson, Operator Algebras and Quantum Statistical Mechanics. 2, Equilibrium states. Models in quantum statistical mechanics. Second edition. Texts and Monographs in Physics. Springer-Verlag, Berlin, 1997.
- [5] R. Carbone, F. Fagnola, and S. Hachicha, Generic quantum Markov semigroups: the Gaussian quage invariant case, preprint.
- [6] F. Cipriani, Dirichlet forms and Markovian semigroups on standard forms of von Neumann algebras, J. Funct. Anal. 147 (1997), no. 2, 259-300.
- [7] D. Goderis and C. Maes, Constructing quantum dissipations and their reversible states from classical interacting spin systems, Ann. Inst. H. Poincare Phys. Theor. 55 (1991), no. 3, 805-828.
- [8] Y. M. Park, Construction of Dirichlet forms on standard forms of von Neumann algebras, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 3 (2000), no. 1, 1-14.
- [9] K. R. Parthasarathy, An Introduction to Quantum Stochastic Calculus, Birkhäuser, Basel, 1992.

VENI CHOI DIVISION OF GENERAL STUDIES AJOU UNIVERSITY SUWON 443-749, KOREA E-mail address: veni@ajou.ac.kr

CHUL KI KO
UNIVERSITY COLLEGE
YONSEI UNIVERSITY
SEOUL 120-749, KOREA
E-mail address: kochulki@yonsei.ac.kr

YONG MOON PARK
DEPARTMENT OF MATHEMATICS
YONSEI UNIVERSITY
SEOUL 120-749, KOREA
E-mail address: ympark@yonsei.ac.kr