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QUANTUM MARKOVIAN SEMIGROUPS
ON QUANTUM SPIN SYSTEMS:
GLAUBER DYNAMICS

VENI CHol, CrUL K1 Ko, AND YONG MOON PARK

ABSTRACT. We study a class of KMS-symmetric quantum Markovian
semigroups on a quantum spin system (A, 7,w), where A is a quasi-local
algebra, 7 is a strongly continuous one parameter group of *-automorph-
isms of A and w is a Gibbs state on .A. The semigroups can be consid-
ered as the extension of semigroups on the nontrivial abelian subalgebra.
Let H be a Hilbert space corresponding to the GNS representation con-
structed from w. Using the general construction method of Dirichlet
form developed in [8], we construct the symmetric Markovian semigroup
{Tt}:>0 on H. The semigroup {T:}:>0 acts separately on two subspaces
Hq and Hyq of H, where Hy is the_diagona.l subspace and H,q is the
off-diagonal subspace, H = Hgq @ H,q. The restriction of the semigroup
{T¢}t>0 on Hy is Glauber dynamics, and for any n € Hoq, Ty decays to
zero exponentially fast as ¢ approaches to the infinity.

1. Introduction

A KMS symmetric quantum Markovian semigroup {S;}:>o0 on a von Neu-
mann algebra M is a KMS symmetric, weakly continuous, contractive and
identity preserving semigroup on M [6]. Quantum Markovian semigroups are
the natural generalization of classical Markovian semigroups and were intro-
duced in physics to model the decay equilibrium of quantum open systems
[2, 3,6, 8, 9]

Many mathematicians and physicists are interested to the problems whether
quantum Markovian semigroups on the subalgebra of a von Neumann algebra
or a C*-algebra have their extensions on the full algebra. The problem of the
extension was studied in {1, 5, 7]. In [5], authors constructed a special class
of generic quantum Markovian semigroups arising in the stochastic limit of a
discrete system with generic free Hamiltonian interacting with a mean zero,
gauge invariant, Gaussian field, and studied its properties. The semigroups
are constructed on the algebra B(h) of all bounded operators on a complex
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separable Hilbert space h and leave invariant not only the diagonal subalgebra
but also the off diagonal subspace with respect to a fixed basis of h. The action
on diagonal operators describes a classical Markov jump process. Goderis and
Maes [7] studied a quantum dynamical system which is an extension of the
classical system such that the property of local reversibility is preserved.

Let M be a von Neumann algebra acting on a complex Hilbert space H and
& be a fixed cyclic and separating vector for M. Let A and J be the modular
operator and the modular conjugation associated with the pair (M, &) [4].
Consider the symmetric embedding:

G0 M — H, ig(A) = AV4Ag.

For a given KMS symmetric quantum Markovian semigroup {S;};>0 on M,
the semigroup {7} }:>0 on H defined by

Tiod9 =490 S

is symmetric, strongly continuous, positive preserving, contractive and T;&y =
& for all t > 0. The semigroup {Ti};>0 is called a symmetric Markovian
semigroup on H. Conversely, for a given symmetric Markovian semigroup
{Tt}t>0 on H, the semigroup {S;}:>0 on M defined by

iOOSt=Tt0i0

is a KMS symmetric quantum Markovian semigroup. (See Theorem 2.11 and
Theorem 2.12 of [6].)

The purpose of this paper is to study a class of KMS symmetric quan-
tum Markovian semigroups on a quantum spin system (A4, 7,w), where A is
a quasi-local algebra, 7 is a strongly continuous one parameter group of -
automorphisms of 4 and w is a Gibbs state on 4. The semigroups can be
considered as the extension of semigroups on the nontrivial abelian subalgebra.
Let ‘H be a Hilbert space corresponding to the GNS representation constructed
from w. Using the general construction method of Dirichlet forms developed in
[8] (noncommutative Dirichlet form in the sense of Cipriani [6]), we construct
the symmetric Markovian semigroup {T;}:>0 on H. The semigroup {T;};>0
acts separately on two subspaces H4 and Hoq of H, where H, is the diagonal
subspace and H,q4 is the off-diagonal subspace, H = Hq ® Hoq. The restriction
of the semigroup {T}}:>0 on Hy is Glauber dynamics, and for any n € H,q,
Tyn decays to zero exponentially fast as ¢t — oc.

This paper is organized as follows. In Section 2, we introduce a quantum
spin system, and construct the symmetric Markovian semigroups by employing
the general construction method of Dirichlet forms developed in [8] on standard
forms of von Neumann algebras. In Section 3, we give the concrete action of
the semigroup constructed in Section 2 and investigate some properties of the
semigroup.
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2. Quantum Markovian semigroups

In this section, we introduce a quantum spin system and construct the sym-
metric Markovian semigroup by employing the general construction method of
Dirichlet forms developed in [8] on standard forms of von Neumann algebras.

Let My(C) be the algebra of 2 x 2 matrices with complex entries. Any
2 x 2 matrix is decomposed as a linear combination of the Pauli matrices

S0, 8%, 8Y, §% defined by

o v (1 0\ o (0 1 (0 =\ o (1 0
#oi-(o 9) s =0 o) =0 0) =00 5)

We define projection operators on C? with an inner product (-, ):

N == (5 o). 1- N =l = (g 7).

s=ll = (§ o). v =t = (7 3).

where u = (}), d = (§) and |n)(¢| denotes the one rank operator on C? such
that [n)(€|¢ = (£, On-
Let F be the family of bounded sets in Z*:
F={Ae€Z” : A is finite}.
For each A € F, A, is the local C*-algebra given by
Ap = ® M,
keA
where My, is an identical copy of M (C). We denote Agxy by A, k € Z". For
A, Ay € F, Ay N Ap =0, Ap, is isomorphic to the C*-subalgebra Ay, ® 14,
of Aa,un,, where 14, denotes the identity operator of Ay,. We identify Ax,
and Ax, ® 15,. Then Ap, C Ap, whenever Ay C Ap, and [A;,42] =0, 4; €
An,, A2 € Ay, whenever A; N Ay = 0. Here [A4, B] means AB — BA.
The quasi local algebra A is defined as the uniform closure of Ay:

AO = U AA,
AeF
(2.1) A = A.

For each k € Z”, the elements S§, S}, Si, Ny, b}, bx in My, are identical copies
of 5%, §¥, 5%, N, b*, b, respectively, and we write Ay ® 1{x}c € Ap as Ag.
We consider the Ising Hamiltonian: for A € F,
Hy = -8 3 i85

{k,1}CA
|k—1]=1

(2.2) - IS Y s

k€A
tea |k—1|=1
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where 8 > 0 is an inverse temperature. Clearly Hy is a self-adjoint element of
Ax. The time evolution 7 is given by the strongly convergent limit of a one
parameter semigroups 7 on A, such that

(2.3) Jim I (4) = 7} (A)]l, A € A,

where 7} (A) = e~ Hr 4ettHr A € Ay, t € R (See Theorem 6.2.4 and Theo-
rem 6.2.6 of [4].)
For A € F, define the local Gibbs state wa on Ay associated with Hy by

(2.4) wa(A) = Tr(pp A), A € Ag,

where py = eflA /Tr(ef2). wy has an extension @, to a state on A by Proposi-
tion 2.3.24 of [4]. Moreover there exist nets of extensions @wa, of wa, such that
@, converges weakly* to a state w on A:
lim @a_ (A4) =w(A
Jim G, (4) = w(4)
for all A € A. Hence w is a thermodynamic limit point of the local Gibbs states
in the sense that

w(4d) = li;n wa, (A)

for all A € Ax and all A € F. The thermodynamic limit w is a 7-KMS state
on A (Proposition 6.2.15 of [4]).

Let (Hy, 7w, ) be the GNS-representation (or cyclic representation) of
(A,w) [4]. Throughout this paper, we write that H = H,, & = Quw, Ma =
Tw{An), M = 1, (A)" and 7° = 7, o7, To simplify the notations, we will omit
7, such that S} := 7,,(S7), etc. Denote by (-,-) the inner product of H. Let
ot, t € R, be the modular automorphism with respect to w and A and J be the
modular operator and modular conjugation associated to the pair (M, &) [4],
respectively. By Theorem 5.3.10 of [4], 0; = 7% and 04(4) = A®AA~# A€
M. Let M’ be the commutant of M. The map j : M — M’ is the anti-linear
*-isomorphism defined by j(4) = JAJ, A € M.

To construct a generator of a symmetric Markovian semigroup on H, we
introduce an (normalized) admissible function [8].

Definition 2.1. An analytic function f : D — C on a domain D containing
the strip Iy, = {z||Imz| < 1/4} is said to be admissible if the following
properties hold:

(a) f(t)>0forallteR,

(b) ft+i/4)+ f(t—1i/4) >0for all t € R,

(c) there exist M > 0 and p > 1 such that the bound

|7 (t +is)] < M(1+[2])77

holds uniformly in s € [-1/4,1/4].
Moreover, if [ f(t)dt =1 then it is called a normalized admissible function.



QUANTUM MARKOVIAN SEMIGROUPS: GLAUBER DYNAMICS 1079

The function

gt - /(ek/4 +e—k/4) 1 2e—iktdk
\/ T

is admissible. (See Lemma 3.1 of [8].)
For a fixed normalized admissible function f, we define an operator H on ‘H
by

(2.5) DH) = {teH: ) |Hpl* < oo},
keZv
H¢ = Y Hit, £ D(H),
keZv
where
(2.6) H, = Hpi1+Hro+ Hegs,

Hp, = /[0t+i/4($z,l) = J(0vyija@r))]

x[oy_ija(xrg) — F(or_ija(xh )] f(t)dt
for ke Z¥,1=1,2,3 and zp,1 = b}, 2 = b, Tk,3 = Ng.

Theorem 2.2. Let H be an operator defined as in (2.5) and (2.6). Then
it is a generator of a strongly continuous, symmetric Markovian semigroup
{Ti}is0, Tr = e *H on H.

Proof. By Theorem 2.1 of [3], for each k € Z¥, Hy, is a (bounded) generator of a
strongly continuous, symmetric Markovian semigroup on #H. See also Theorem
3.1 of [8]. Clearly Mx& C D(H) for any A € F, and so H is densely defined.
Since H is a symmetric operator on H it has a closed extension, denoted by
H again. By Theorem 5.2 of [6], H is a generator of a strongly continuous,
symmetric Markovian semigroup {T}}:>0, Tt = e~ on H. O

3. Action of the generator H

In this section, we introduce two subspaces of H, the diagonal subspace 4
and the off-diagonal subspace Hoq, H = Ha® Hoa, and investigate the concrete
action of the generator H of the semigroup {T;}:>0 constructed in Theorem
2.2 on H4 and H,q, respectively.

We first give elementary facts.

Lemma 3.1. (a) The following relations hold: for any k € Z*

(3.1) (Si)? =1, b; = (b3)* =0,
(3.2) bebl = (1= N)p = —SZ(1 — N)g, bibe = Ni, = SZN,
(3:3) bLSE = ~Sibp = b, buSi = —Sibi = by,

(34) [Si’bﬂ = 2b2a [Slivbk] = "2bk~
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(b) The actions of modular operator o,

(3.5) ou(by) = exp(ift > Si)bi,
|zl_€k:|u=1
or(br) = exp(—ift Y S)b,
lezv
{l—k|=1
Ut(Nk) = Nk

hold for any k € Z¥ and t € R.

Remark 3.2. In fact, the relations (3.5) hold for all t € C. (See Proposition
2.5.22 of [4].)

Proof of Lemma 3.1. (a) This directly follows from the definitions of b3, by, Ny
and Sf for any k € Z*.
(b) Notice that for A € My, A€ F
d

(3.6) 5(4) = Eat(A) |lt=0

= —?:[HAI,A], ACA.
Choosing A = b}, in (3.6), we have
* Z 2[Qz L*
5(bk) = ?ﬁ Z S [Sk,bk]

lezv
|l—k|=1

= B Y Sib;.
leZv
|i—k|=1
Here we have used (3.4) in the second equality. Thus we get
ou(bi) = exp(iBt D SPIb;.
ey

[I—k|=1
The other relations are obtained by the similar calculation. O
We define a (diagonal) subalgebra My of M, and two Hilbert spaces Hq and
Hoq called the diagonal subspace and the off-diagonal subspace, respectively:
M := the subalgebra generated by {S} : k € Z"},
Hq := the closure of My&p = {A&: A € My}in H,
Hoq := the orthogonal complement H; of Hg.
Remark 3.3. (1) Since S = Ny — (1 — N)i, k € Z¥ and 04(Ng) = Ny, Mgy is
the centerizer of gy in the sense that o;(My) = My for all t € R

(2) Since (S7)? = 1 for k € Z*, the subspace generated by the vectors of the
form

m = (][] 886, Ae F

keA
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is dense in Hq4.
(3) H="Ha® Hoa-
(4) MgHq C Hg.

Theorem 3.4 (Action of the generator H on H4). For each k € ZY, let Hy, be
defined as in (2.6). Then it acts on Hq as follows: for any na = HleA Yo €
Hq, A € F,

dexp (- Zte SESE)m ifkeA

(3.7) Hina = {
0 if kA

Remark 3.5. (1) TyHy C Hy for all t € R
(2) For a fixed k € Z”, let n = g(SZ,57%1 € Z¥\ {k}& and ptF) =
g(—=Sz,8F;1 € Z\ {k})&, where g is continuous as a function on R?. Then
i 2n if gis odd for S
n—n*) =

0 if g is even for S}.
The expression (3.7) is rewritten as

Hyn = 2exp ( Z SiSE)(n — ).

ey
|1—k|=1

This is the Glauber dynamics.

Proof of Theorem 3.4. Let ny = ([[;cp Si)é0 € Ha, A € F. Since for fixed
k€A, Hﬁiﬁ Sf commutes with Hy, by (3. 5) and the definition of Hy in (2.6),

we consider only
n = S;& = 04—i/4(Sk)éo-
It follows from [N, S§] = 0 that
(3.8) Hpzn=0.
Next, we consider Hy ;7. By (3.4) and (3.5), we have
[0t —i7a(b}) — §(04—i/a(bK))n

= at_i/4([bza Sli])€0
= Ut_z'/4 (‘2b2)£0

= —2exp ((Zt + :]i)ﬂ Z Sf)biﬁo

env
|1—k|=1
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and so
(044574 (br) — J'(Ut+i/4(b2))][0t i74(0%) — 3(04—i7a(be))In
= —2eXP((Zt+ B Y SP)oerisa(br)bi — Ui (0144 (07))]Eo
Ille’ﬁul
= 2[exp > S7)bbi —exp ( Z SF)brbe)€
H4d H¥Ad
[—kj=1 H—k|=1
(39) = —2exp(% Z SEY(X = N)rbo + 2exp (— 5 Z S7) Nio.
lezv lezv
[—k|=1 |l—k|=1

Here we have used j(oy1i/4(b}))é = 01—3i/a(bk)éo and (3.5) in the second
equality and (3.2) in the third equality.
Notice that by (3.1) and (3.2)

(3.10)  exp( Z SF)(1 = N)g =exp ( Z SiS7) (1 = N,
lezv leZV
Il k|=1 fl—k]=1
B
ex S7 N =exp(—= S S
P ; z k= P 2 IGZ; k l
[I—k|=1 [I—k|=1

Substituting (3.10) into (3.9), we get
[Ut+i/4(bk) - j(Ut+i/4(bZ))][Ut—i/A;(bZ) - j(Ut—i/4(bk))]77
= —2exp( — g Z SESE)(1 = N)gbo + 2exp (- g Z SiSP) Nibo

tezv 1ezv
[I—k|=1 [l—k|=1

= 2exp ( Z SiSi)Skéo

lezv
[l—k(=1

= 2€Xp Z SkSl
lezv
[I—kf=1

Thus for na = ([T, S7)&o, since [ f(t)dt = 1, we have
2exp( Z tez SkSZ)T]A if ke

i
0 if &¢A.
By the similar calculation we can also check
(3.12) Hy2na = Hiama-

The relation (3.7) follows from (3.8), (3.11) and (3.12). The proof is completed.
]

(3].].) Hk,l nA = {
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In the rest of this paper, bf; is either bf or bi. Recall that
. 1
(Si)? =1, b = (b;)° =0, bybr = Np = 5(1 + 57), ete.

Let A € M be a monomial in the algebra generated by {bx, b}, Sf : k € Z"}.
Then A&y can be written as a linear combination of the vectors of the form

s = ([T CIT Siéos
€A meA,

where Ay, Ay € F are disjoint. Clearly the family of the above vectors is dense
in H. Recall that the diagonal subspace H, is spanned by the vectors of the

form 759 := s = (Iliep Si)60r A€ F.

Lemma 3.6. (a) The Hilbert space H,q is the closure of the subspace spanned
by the vectors of the form

s = ([ oDCI] Siéo.
leAg meEA,

where A1, Ay € F are disjoint and As # .
(b) MaHod C Hod.

Recall MyHy C Hy (Remark 3.3 (4)).

Proof of Lemma 3.6. (a) Let na, o, = (HleAzbf)(HmeAlsfn)&] for Ay, A € F,
A1 NAs; =0 and Ay # 0. Notice that for any Az € F

(Magsmasaa) = (G, ([T 0DC TI  Sh)éo)
€A, mEAI AAsg

where we have used the KMS condition and (S7)? =1
Since M4 is spanned by the vectors of the form ([],cs i), A € F, it
suffices to show that

(3.13) (. (JToh( I Si)g) =0for As #0.

leAs  mEALAA;
Using the KMS condition, we have
(€0, 1S} 1as ) = (€0, STbI ML As)
for Id AsUAs, AyNAs =0, Ay, A5 € F, and so
(€0, b7, 57 1nans) = O,
which implies (3.13). We obtain from (3.4) that
(€0,bfmas ) =0 f 1 € AsUAs.

The part (a) of lemma is proved.
(b) This follows from the facts S7bf = by, Sib = —b. 0O
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Theorem 3.7 (Action of the generator H on H,q). For each k € Z*, let Hy,
be defined as in (2.6). Then it acts on H,q as follows: for any

TIA1,A2 = (H b?)( H S0,
leAs mEA;

A, A€ F,A1NAs =0 and As # 0,
(3.14)
0 if k& AL UAs,
Henaon, =< [1 +2cosh( Z ez ElSkSl Nnaia.  if k€ Ag,

k|=
4exp( E zezv E[Sk )7]/\1 Ag Zf ke A

Hereer=—-1ifle Ay ande =1 ifl € As.
Proof. Let

mae = ([ O] Saé

lehs  mel;
for A;, Ay € F, A1 N Az = § and Ay # 0. Recall that Hz;g#/\kl S7 and Hlﬁi\f b
commute with Hy. If & € A; U Ao, then
(3.15) Hina,a, = 0.
To prove the case k € Aj, let

mnene = [IOCTT 52

ll€A2 meEA;

Since [N, b;] = b; and [ f(t)dt = 1, it is easily checked that
(3.16) Hi,3701,0, = NAy A,

Also we get from the identity (b})% = 0 that

(3.17) Hy,imay,0, = 0.

Now, we calculate Hy 2 7na,,A,- We will again adopt the similar calculations
used to get the relation (3.11) in the proof of Theorem 3.4. By (3.5) and
[bk, b;] = —Si, we have

[0¢—i74(bk) —j(Un i/ (b))]b%&o
= exp zt+ Z S, [br, b% &0

lezv
[l—k|=1

—exp (- (zt+ B D SF)Sib

lezv
J—k|=1
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and hence
(O01i/a(bk) = J(0t1i/a(br))][o1—i/a(bk) — §(0c—i/a(b5))]0%Eo
= —ew(—Gt+ P8 Y Slopn 0Dt - Stiloeri B

ey
fl—k|=1
= [—exp(— Z SF)b;Si +exp (5 Z SF)Szbt) o
|zl€k“| 1 |zl€k|V1
= exp Z SESE)biibo +exp ( Z SiSP)biéo
lllekqi =1 |z k| 1
= [exp(~-73 Z SiSP) +exp (5 Z SiS7)1bi&o,
lgt ey
Ji— k| 1 {—k|=1

where we used (3.3) in the third equality.
Applying bi exp(i%S 2= exp(:figs ,j)b?c to the above, and since the function
f(t) is normalized admissible, we have

Hemse = low(=52 Y asisi) +en(5 3 asisi)m.a.
|ll—1;]l;1 |zl-km]];1
8 e
(3.18) = 2cosh(§ ; 15755 ) MAr Ass
li—k|=1

where g; = —1ifl€ Agand g, = 1if |l € As.
For na; a, = bx([] ez b?)(HmEAl Sz )&o, the similar calculation as the above
1#£k

gives
(3.19) Hi,3 61,82 = NA1,42)
Hk,l NAL, A2 = 07
Hi2ma, 0, = 2cosh(§ Z e1SES ) NAr s
ey
|1—k|=1

Hence we get

Hena,n, =[1 +2cosh(§ Z e1SESE) Ay As-

lenv
ll~k|=1
Next, to prove the case k € Ay, let

e = Si(JT8DCT] Sz)é.

€A
l€A2 T;#kl
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By the similar calculation used to (3.16), (3.17) and (3.18), we have

(320) Hk,3 TAL,A2 — 0;

Hi1ma,0, = Hp om0 A,

(3.21) =T [T Sien(=5 3 asisi)sico,

leA meEA, lerv
€h2 metk |1—k|=1

where ¢; is defined as in (3.18). Applying (3.3) to (3.21), we get

Heimaa, = Hpoanaa,
/B z z
= 2exp(——§ IEZ:V €157 57 ) Ay Az
li—k|=1
Thus
Hinayn, = 46XP(-§' Z szSZSf)nAl,Az-
=iz
The proof is completed. O

Remark 3.8. (1) TyHoaq C Hoa for all t € R

(2) For any n € Hoa, {1, Hn) > |In||*>. In particular, for any n € Hoq, Tt

decays to zero exponentially fast as t = oo.

(1]
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