Superconducting Properties of Top-seeded Melt Growth Processed YBa₂Cu₃O_x Superconductors with Calcium Doping

J. S. Choi^a, S. D. Park^b, B. H. Jun^b, Y. H. Han^c, T. H. Sung^c, K. N. Choo^d, C. J. Kim^{*, b}, W. Song^a, Y. Chong^a

^b Neutron Science Division, Korea Atomic Energy Research Institute, Daejon, Korea

 c Superconductivity and Applications Group, Korea Electric Power Research Institute, Daejeon, Korea

^d Research Reactor Engineering Division, Korea Atomic Energy Research Institute, Daejon, Korea

Effects of Calcium-doping on the superconducting properties of top seeded melt growth (TSMG) processed YBa₂Cu₃O_{7-v} superconductors were investigated. At first, precursor powder (YBa_{2-x}Ca_xCu₃O_{7-v} (Y123) with 0.005 x 0.01) were synthesized by the solid state reactions and then single grain bulk superconductors were fabricated by a seeded melt growth process using the precursor powders. Phase formation and superconducting properties were estimated by powder X-ray diffraction and SQUID magnetometer. The superconducting temperatures (T_c) of the Y123 samples with x=0.005 and 0.01 were 89.56K, 89.05K slightly lower than T_c of 91K of undoped samples, which is ascribed to the substitution of calcium to Y123 lattices. Anomalous peak effect in the intermediate magnetic fields of 2-4 T was observed in Ca-doped samples. The critical current density (J_c) at 77 K of the samples with x=0, 0.005 and 0.01 were 1.1×10^4 A/cm², 6.3×10^4 A/cm² and 4.0×10^4 A/cm², respectively. It suggests that the superconducting properties regarding flux pinning can be enhanced by calcium doping.

Keywords: YBa2Cu3O7-v, Ca-doping, Melt growth process, Critical current density, Peak effect