DOI QR코드

DOI QR Code

Comparative Evaluation of Images after Applying Quantum Denoising System Algorithm to Brain Computed Tomography

뇌 컴퓨터단층검사 시 양자잡음제거 알고리즘을 적용한 영상의 비교평가

  • Cho, Pyong-Kon (Department of Radiological Science, Daegu Catholic University)
  • 조평곤 (대구가톨릭대학교 방사선학과)
  • Received : 2017.11.20
  • Accepted : 2017.12.12
  • Published : 2017.12.31

Abstract

The objective of this study was to evaluate the enhancement effects of the quantum denoising system (QDS) on brain CT images. This retrospective study was conducted with 45 adults who visited G Radiology located in Gyungbuk for having brain CT tests between Jul 2017 and Oct 2017 after receiving consents. Subjects were divided into a control group (A group; no QDS(-) application during the brain CT test) and a treatment group (B Group; QDS(+) application during the brain CT test). The following conclusions were obtained from the study. The noise values at the Pons part and the Vermis part were significantly (p<0.05) lower in B Group ($Pons=5.41{\pm}1.05HU$; $Vermis=5.28{\pm}0.73HU$) than A Group ($Pons=6.92{\pm}0.98HU$; Vermis=6.72). The SNR values at the Pons part and the Vermis part were significantly (p<0.05) higher in B Group ($Pons=7.28{\pm}2.56$; $Vermis=8.63{\pm}3.04$) than A Group ($Pons=5.21{\pm}1.28$; $Vermis=6.23{\pm}1.49$). In conclusion, the results of this study suggested that the application of QDS to the brain CT test would enhance the signal to noise ratio (SNR) and the contrast to noise ratio (CNR) to provide an image more appropriate for diagnosis.

본 연구의 목적은 뇌 컴퓨터단층검사 시 양자잡음제거(Quantum Denoising System; QDS) 알고리즘을 적용한 영상 분석을 통해 화질 향상 효과를 알아보고자 한다. 2017년 7월부터 2017년 10월까지 경북 소재 G 영상의학과에 뇌 컴퓨터단층검사를 위해 내원한 45명의 성인을 대상으로 동의하에 후향적 연구를 하였고, 뇌 컴퓨터단층검사 시 QDS(-)를 적용하지 않은 그룹(A Group)과 QDS(+)를 적용한 그룹(B Group)으로 나누어 검사하였다. 다음과 같은 결론을 얻었다. 노이즈값은 Pons부분과 Vermis부분 모두 QDS(+)를 적용한 B그룹에서 통계적으로 유의하게 낮았다(A Group; Pons $6.92{\pm}0.98HU$, Vermis 6.72, B Group; Pons $5.41{\pm}1.05HU$, Vermis $5.28{\pm}0.73HU$ : p<0.05). SNR값은 Pons부분과 Vermis 부분 모두 QDS(+)를 적용한 B그룹에서 통계적으로 유의하게 높았다(A Group; Pons $5.21{\pm}1.28$, Vermis $6.23{\pm}1.49$, B Group; Pons $7.28{\pm}2.56$, Vermis $8.63{\pm}3.04$ : p<0.05). 결론적으로 뇌 컴퓨터단층검사 시 양자잡음제거 알고리즘을 적용한다면 영상의 노이즈 감소 및 신호 대 잡음비(SNR), 대조도 대 잡음비(CNR)를 좀 더 개선시켜 진단에 적절한 영상을 얻을 수 있을 것으로 생각된다.

Keywords

References

  1. Lim CH, Cho JK, Lee MK. A Study on Radiation Dose in Computed Tomographic Examinations. J Radiological Science and Technology. 2007;30(4):381-389.
  2. Kim IO. Diagnostic Imaging in Pediatric Central Nervous System. J Korean Pediatric Association. 1996;39(7):885-888.
  3. Lee CH, Goo M, Ye HJ. Radiation dose modulation techniques in the multi detector CT era from basics to practice. RadioGraphics. 2008;28(2):1451-1459. https://doi.org/10.1148/rg.285075075
  4. Smith AB, Dillon WP, Lau BC. Radiation dose reduction strategy for CT Protocols: successful implementation in neuro radiology section. Radiology. 2008;247(2):499-506. https://doi.org/10.1148/radiol.2472071054
  5. Jang HC, Kim KK, Cho JH, Seo JM, Lee HK. Evaluation of Image Noise and Radiation Dose Analysis In Brain CT Using ASIR. J Korean Society of Radiology. 2012;6(5):357-363. https://doi.org/10.7742/jksr.2012.6.5.357
  6. Ko YH, Kwon DC, Kim KK. Textbook of Computed Tomography. Chung-gu Publishing; 2017.
  7. Jeong WC, Lee GS, Kang HK, Lee SH, Kim CN, Kim KW. Study on the influence of kVp for Metal Artifact in the Brain CTA Scan. J Korean Society of Computed Tomographic Technology. 2013;15(1):181-189.
  8. Smith BR, Lipson J, Marcus R, et al. Radiation dose associated with common computed tomography examinations and associated lifetime attributable risk of cancer. Arch Intern Med. 2009;169(22):2079-2086.
  9. MEDPAC. A Data Book. Healthcare Spending and the Medicare Program. Medicare Advisory Commission. 2013.
  10. Payne JT. CT radiation dose and image Quality. Radiol Clin North Am. 2005;43(6):953-962. https://doi.org/10.1016/j.rcl.2005.07.002
  11. Hsieh J. Computed tomography: Principles, design, artifacts and recent advances. SPIE. 2009
  12. Dougeni E, Faulkner K, Panayiotakis G. A review of Patient dose and optimisation methods in adult and pediatric CT scanning. Eur J Radiol. 2011;81(4): 665-683.
  13. Okumura M, Ota T, Tsukagoshi S, et al. New method of evaluating edge-preserving adaptive filters for CT. digital phantom method. Nippon Hoshasen Gijutsu Gakkai Zasshi. 2006;62(7):971-978. https://doi.org/10.6009/jjrt.62.971
  14. Sasaki T, Sasaki M, Hanari T, et al. Improvement in image quality of noncontrast head images in MDCT by volume helical scanning with a three dimensional denoising filter. Radiat Med. 2007;25: 368-372. https://doi.org/10.1007/s11604-007-0145-3
  15. Eiji N, Katsuhiro I, Izumi O, et al. Development of a Noise Reduction Filter Algorithm for Pediatric Body Images in Multidetector CT. J of Digital Imaging. 2010;23(6):806-818. https://doi.org/10.1007/s10278-009-9218-4
  16. Miwa O, Takamasa O, Kazuhisa K, et al. Effect of Edge-Preserving Adaptive Image Filter on Low-Contrast Detectability in CT systems:Application of Roc Analysis. International Journal of Biomedical Imaging. 2008;1-7.