• Title/Summary/Keyword: quantum dot(QD)

Search Result 124, Processing Time 0.025 seconds

NMR analysis of organic ligands on quantum-dots

  • Kim, Jin Hae
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.23 no.2
    • /
    • pp.51-55
    • /
    • 2019
  • Quantum dot (QD) is an emerging novel nanomaterial that has wide applicability and superior functionality with relatively low cost. Nuclear magnetic resonance (NMR) spectroscopy has been contributed to elucidate various features of QDs and to improve their overall performance. In particular, NMR spectroscopy becomes an essential analytical tool to monitor and analyze organic ligands on the QD surface. In the present mini-review, application of NMR spectroscopy as a superb methodology to appreciate organic ligands is discussed. In addition, it was recently noted that ligands exert rather greater influence on diverse features of QDs than our initial anticipation, for which contribution of NMR spectroscopy is briefly reviewed.

Heterojunction Quantum Dot Solar Cells Based on Vertically Growth TiO2 Anatase Nanorod Arrays with Improved Charge Collection Property

  • Chung, Hyun Suk;Han, Gill Sang;Park, So Yeon;Lee, Dong Geon;Jung, Hyun Suk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.466.2-466.2
    • /
    • 2014
  • The Quantum dot (QD) solar cells have been under active research due to their high light harvesting efficiencies and low fabrication cost. In spite of these advantages, there have been some problems on the charge collection due to the limitation of the diffusion length. The modification of advanced nanostructure is capable of solving the charge collection problem by increasing diffusion length of electron. One dimensional nanomaterials such as nanorods, nanowires, and nanotubes may enhance charge collection efficiency in QD solar cells. In this study, we synthesized $TiO_2$ anatase nanorod arrays with length of 200 nm by two-step sol-gel method. The morphology and crystal structure for the nanorod were characterized by using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD). The anatase nanorods are single-crystalline and possess preferred orientation along with (001) direction. The photovoltaic properties for the heterojunction structure QD solar cells based on the anatase nanorod were also characterized. Compared with conventional $TiO_2$ nanoparticle based QD solar cells, these nanostructure solar cells exhibited better charge collection properties due to long life time measured by transient open circuit studies. Our findings demonstrate that the single crystalline anatase nanorod arrays are promising charge transport semiconductors for heterojunction QD solar cells.

  • PDF

Effect of Si Doping in Self-Assembled InAs Quantum Dots on Infrared Photodetector Properties (Si 도핑이 InAs 자기조립 양자점 적외선 소자 특성에 미치는 효과)

  • Seo, Dong-Bum;Hwang, Je-hwan;Oh, Boram;Kim, Jun Oh;Lee, Sang Jun;Kim, Eui-Tae
    • Korean Journal of Materials Research
    • /
    • v.29 no.9
    • /
    • pp.542-546
    • /
    • 2019
  • We investigate the characteristics of self-assembled quantum dot infrared photodetectors(QDIPs) based on doping level. Two kinds of QDIP samples are prepared using molecular beam epitaxy : $n^+-i(QD)-n^+$ QDIP with undoped quantum dot(QD) active region and $n^+-n^-(QD)-n^+$ QDIP containing Si direct doped QDs. InAs QDIPs were grown on semi-insulating GaAs (100) wafers by molecular-beam epitaxy. Both top and bottom contact GaAs layer are Si doped at $2{\times}10^{18}/cm^3$. The QD layers are grown by two-monolayer of InAs deposition and capped by InGaAs layer. For the $n^+-n^-(QD)-n^+$ structure, Si dopant is directly doped in InAs QD at $2{\times}10^{17}/cm^3$. Undoped and doped QDIPs show a photoresponse peak at about $8.3{\mu}m$, ranging from $6{\sim}10{\mu}m$ at 10 K. The intensity of the doped QDIP photoresponse is higher than that of the undoped QDIP on same temperature. Undoped QDIP yields a photoresponse of up to 50 K, whereas doped QDIP has a response of up to 30 K only. This result suggests that the doping level of QDs should be appropriately determined by compromising between photoresponsivity and operating temperature.

Influence of InGaAs Capping Layers on the Properties of InAs/GaAs Quantum Dots (InAs/GaAs 양자점의 발광특성에 대한 InGaAs 캡층의 영향)

  • Kwon, Se Ra;Ryu, Mee-Yi;Song, Jin Dong
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.6
    • /
    • pp.342-347
    • /
    • 2012
  • The optical properties of InAs quantum dots (QDs) grown on a GaAs substrates by migration enhanced molecular beam epitaxy method have been investigated by using photoluminescence (PL) and time-resolved PL measurements. The luminescence properties of InAs/GaAs QDs have been studied as functions of temperature, excitation laser power, and emission wavelength. The PL peak of InAs QDs capped with $In_{0.15}Ga_{0.85}As$ layer (QD2) measured at 10 K is redshifted about 80 nm compared with that of InAs QDs with no InGaAs layer (QD1). This redshift of QD2 is attributed to the increase in dot size due to the diffusion of In from the InGaAs capping layer. The PL decay times of QD1 and QD2 at 10 K are 1.12 and 1.00 ns taken at the PL peak of 1,117 and 1,197 nm, respectively. The reduced decay time of QD2 can be explained by the improved carrier confinement and enhanced wave function overlap due to increased QD size. The PL decay times for both QD1 and QD2 are independent on the emission wavelength, indicating the uniformity of dot size.

Eco-Friendly Emissive ZnO-Graphene QD for Bluish-White Light-Emitting Diodes

  • Kim, Hong Hee;Son, Dong Ick;Hwang, Do-Kyeong;Choi, Won Kook
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.627-627
    • /
    • 2013
  • Recently, most studies concerning inorganic CdSe/ZnS quantum dot (QD)-polymer hybrid LEDs have been concentrated on the structure with multiple layers [1,2]. The QD LEDs used almost CdSe materials for color reproduction such as blue, green and red from the light source until current. However, since Cd is one of six substances banned by the Restriction on Hazardous Substances (RoHS) directive and classified into a hazardous substance for utilization and commercialization as well as for use in life, it was reported that the use of CdSe is not suitable to fabricate a photoelectronic device. In this work, we demonstrate a novel, simple and facile technique for the synthesis of ZnO-graphene quasi-core.shell quantum dots utilizing graphene nanodot in order to overcome Cd material including RoHS materials. Also, We investigate the optical and structural properties of the quantum dots using a number of techniques. In result, At the applied bias 10 V, the device produced bluish-white color of the maximum brightness 1118 cd/$m^2$ with CIE coordinates (0.31, 0.26) at the bias 10 V.

  • PDF

Application of Quantum-dot Nanocrystals for Cyanobacterial Toxin-Microcystin Detection (나노크리스탈 Quantum-dot을 적용한 남조류 독소 Microcystin 탐지 연구)

  • Lee, Jinwook;Yu, Hye-Weon;Kim, In S.
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.5
    • /
    • pp.705-711
    • /
    • 2007
  • Green quantum-dot nanocrystal (QD525) with anti-microcystin monoclonal antibody was applied for detection of microcystin, a monocyclic peptide hepatotoxin, extracted from the culture of Microcystis aeruginosa. The presence of microcystin in the cell lysate was verified by HPLC analysis with UV absorbance at 238 nm. Microcystis cell extract exhibited fluorescence emission spectra, which peak was around 460 nm because of their complex organic substances. When a spherical QD525 antibody conjugates (10~20 nm in diameter) were bound to the microcystins in the Microcystis cell lysate, the fluorescence intensity of the primary peak at 525 nm diminished while the secondary emission peak at 460 nm slightly increased intensities. It is due to energy transfer from the primary (major) to the secondary (minor) peak, resulting from physical deformation of QD525 and different environmental factors. On the other hand, other cell extracts did not show any fluorescence emission change. This study is very available for detecting and monitoring the microcystin because it is one step assay without washing step and portable spectrophotometer makes on-site measurement possible. For health risk assessment of the microcystin, the reliable and rapid system to detect and quantify microcystin is seriously required.

InAs 양자점을 이용하여 Silicon (001) 기판위에 제작된 고품질 InSb layer의 특성 분석

  • Im, Ju-Yeong;Song, Jin-Dong;Jo, Nam-Gi;Park, Seong-Jun;Sin, Sang-Hun;Choe, Won-Jun;Lee, Jeong-Il;Kim, Gyeong-Ho;An, Jae-Pyeong;Kim, Hyeong-Jun;Yang, Hae-Seok;Choe, Cheol-Jong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.110-110
    • /
    • 2010
  • 본 실험에서는 Silicon (001) 기판을 사용하여 silicon 기판상에 modified Stranski-Krastanow(S-K) 방식으로 InAs quantum dot (QD) 을 성장하고 그 위에 InSb layer를 형성하였다. 기판온도 $390^{\circ}$에서 In injection period를 4번 반복하여 제작된 InAs quantum dot layer를 buffer로 사용하였으며, QD layer의 밀도는 $1{\mu}m^2$ 당 600개, height가 $6.2\;{\pm}\;2.0\;nm$, width가 $36.1\;{\pm}\;9.2\;nm$ 정도이다. 성장된 $2.8{\mu}m$ 두께의 InSb film의 특성을 분석해 보면 AFM 상에서의 root mean square (rms) roughness는 5.142nm정도이며, electron mobility는 340 K 에서 $41,352cm^2/Vs$, 1.8 K에서는 $4,215cm^2/Vs$ 정도를 나타내었다. 본 실험에서는 다른 실험과는 달리 InAs QD 을 buffer layer로 사용하였으며, silicon기판도 아무런 처리가 되지 않은 (001)기판을 사용하였으므로 기존의 다른 연구 결과와는 차별성을 가진다. 또한 buffer로 사용된 InAs quantum dot layer의 종류를 한 가지로 고정하고 실험을 하였지만 추후 더욱 다양한 밀도와 크기의 quantum dot layer를 적용시키고, 기존의 다른 논문에서 적용된 방법들을 추가로 적용시켜 본다면 mobility값은 더욱 증가할 것으로 생각된다. 이러한 연구를 통해 값이 싸고 구하기 쉬운 silicon기판상에 silicon에 비하여 더 좋은 특성을 갖는 III-V족 화합물 반도체 소자를 구현 할 수 있을 것으로 생각된다.

  • PDF

Rapid and Accurate Detection of Bacillus anthracis Spores Using Peptide-Quantum Dot Conjugates

  • Park, Tae-Jung;Park, Jong-Pil;Seo, Gwi-Moon;Chai, Young-Gyu;Lee, Sang-Yup
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.11
    • /
    • pp.1713-1719
    • /
    • 2006
  • A method for the simple, rapid, specific, and accurate detection of Bacillus anthracis spores was developed by employing specific capture peptides conjugated with fluorescent quantum dots (QDs). It was possible to distinguish B. anthracis spores from the spores of B. thuringiensis and B. cereus using these peptide-QD conjugates by flow cytometric and confocal laser scanning microscopic analyses. For more convenient high-throughput detection of B. anthracis spores, spectrofluorometric analysis of spore-peptide-QD conjugates was performed. B. anthracis spores could be detected in less than 1 h using this method. In order to avoid any minor yet false-positive signal caused by the presence of B. thuringiensis spores, the B-Negative peptide, which can only bind to B. thuringiensis, conjugated with another type of QD that fluoresces at different wavelength was also developed. In the presence of mixed B. anthracis and B. thuringiensis spores, the BABA peptide conjugated with QD525 and the B-Negative peptide conjugated with QD585 were able to bind to the former and the latter, specifically and respectively, thus allowing the clear detection of B. anthracis spores against B. thuringiensis spores by using two QD-labeling systems. This capture peptide-conjugated QD system should be useful for the detection of B. anthracis spores.

Cellular Uptake Properties of the Complex Derived from Quantum Dots and G8 Molecular Transporter

  • Im, Jung-Kyun;Maiti, Kaustabh K.;Kim, Wan-Il;Kim, Kyong-Tai;Chung, Sung-Kee
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.4
    • /
    • pp.1282-1292
    • /
    • 2011
  • The biotin-attached G8 molecular transporter (5) was synthesized and used together with quantum dots in preparing the complexes (QD-MT). The QD-MT complexes were studied in terms of the cellular uptake and the internalization mechanism in live HeLa cells with the aid of various known endocytosis inhibitors. It has been concluded that the QD-MT complex is internalized largely by macropinocytosis. The mouse tissue distribution of the QD-MT complex by i.p. and i.v. routes showed some organ selectivity and a good ability to cross the BBB.

Optical dielectric function of impurity doped Quantum dots in presence of noise

  • Ghosh, Anuja;Bera, Aindrila;Ghosh, Manas
    • Advances in nano research
    • /
    • v.5 no.1
    • /
    • pp.13-25
    • /
    • 2017
  • We examine the total optical dielectric function (TODF) of impurity doped GaAs quantum dot (QD) from the viewpoint of anisotropy, position-dependent effective mass (PDEM) and position dependent dielectric screening function (PDDSF), both in presence and absence of noise. The dopant impurity potential is Gaussian in nature and noise employed is Gaussian white noise that has been applied to the doped system via two different modes; additive and multiplicative. A change from fixed effective mass and fixed dielectric constant to those which depend on the dopant coordinate manifestly affects TODF. Presence of noise and also its mode of application bring about more rich subtlety in the observed TODF profiles. The findings indicate promising scope of harnessing the TODF of doped QD systems through expedient control of site of dopant incorporation and application of noise in desired mode.