Browse > Article
http://dx.doi.org/10.5757/JKVS.2012.21.6.342

Influence of InGaAs Capping Layers on the Properties of InAs/GaAs Quantum Dots  

Kwon, Se Ra (Department of Physics, Kangwon National University)
Ryu, Mee-Yi (Department of Physics, Kangwon National University)
Song, Jin Dong (Nanophotonics Research Center, Korea Institute of Science and Technology)
Publication Information
Journal of the Korean Vacuum Society / v.21, no.6, 2012 , pp. 342-347 More about this Journal
Abstract
The optical properties of InAs quantum dots (QDs) grown on a GaAs substrates by migration enhanced molecular beam epitaxy method have been investigated by using photoluminescence (PL) and time-resolved PL measurements. The luminescence properties of InAs/GaAs QDs have been studied as functions of temperature, excitation laser power, and emission wavelength. The PL peak of InAs QDs capped with $In_{0.15}Ga_{0.85}As$ layer (QD2) measured at 10 K is redshifted about 80 nm compared with that of InAs QDs with no InGaAs layer (QD1). This redshift of QD2 is attributed to the increase in dot size due to the diffusion of In from the InGaAs capping layer. The PL decay times of QD1 and QD2 at 10 K are 1.12 and 1.00 ns taken at the PL peak of 1,117 and 1,197 nm, respectively. The reduced decay time of QD2 can be explained by the improved carrier confinement and enhanced wave function overlap due to increased QD size. The PL decay times for both QD1 and QD2 are independent on the emission wavelength, indicating the uniformity of dot size.
Keywords
InAs; Quantum dots; Photoluminescence; Time-resolved photoluminescence;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 H. J. Lee, M.-Y. Ryu, and J. S. Kim, J. Appl. Phys. 108, 093521 (2010).   DOI
2 H. J. Lee, M.-Y. Ryu, and J. S. Kim, J. Korean Vac. Soc. 18, 474 (2009).   DOI
3 N. K. Cho, S. P. Ryu, J. D. Song, W. J. Choi, and J. I. Lee, Appl. Phys. Lett. 88, 133104 (2006).   DOI   ScienceOn
4 V. D. Dasika, J. D. Song, W. J. Choi, N. K. Cho, J. I. Lee, and R. S. Goldman, Appl. Phys. Lett. 95, 163114 (2009).   DOI
5 Y. P. Varshni, Physica 34, 149 (1967).   DOI   ScienceOn
6 O. Madelung, Landolt-Bornstein: Numerical Data and Functional Relationships in Science and Technology New Series, III/17a (Springer, Berlin, 1982), p. 297.
7 M. Asada, Y. Miyamoto, and Y. Suematsu, IEEE J. Quantum Electron. 22, 1915 (1986).   DOI
8 A. Fiore, U. Oeserle, R. P. Stanlye, and M. Ilegems, IEEE Photon. Technol. Lett. 12, 1601 (2000).   DOI   ScienceOn
9 Y. Nakata, K. Mukai, M. Sugawara, K. Ohtsubo, H. Ishikawa, and N. Yokoyama, J. Crystal Growth 208, 93 (2000).   DOI
10 A. D. Stiff, S. Krishna, P. Bhattacharya, and S. Kennerly, Appl. Phys. Lett. 79, 421 (2001).   DOI
11 D. Zhou, P. E. Vullum, G. Sharma, S. F. Thomassen, R. Holmestad, T. W. Reenaas, and B. O. Fimland, Appl. Phys. Lett. 96, 083108 (2010).   DOI   ScienceOn
12 H. W. Shin, J. W. Choe, J. O. Kim, S. J. Lee, C. S. Kim, and S. K. Noh, J. Korean Vac. Soc. 20, 35 (2011).   DOI
13 D. Sreenivasan, J. E. M. Haverkort, T. J. Eijkemans, and R. Notzel, Appl. Phys. Lett. 90, 112109 (2007).   DOI   ScienceOn
14 S. Kim, D. K. Oh, P. W. Yu, J.-Y. Leem, J. I. Lee, and C. R. Lee, J. Crystal Growth 261, 38 (2004).   DOI   ScienceOn
15 L. M. Kong, J. F. Cai, Z. Y. Wu, Z. Gong, Z. C. Niu, and Z. C. Feng, Thin Solid Films 498, 188 (2006).   DOI
16 J. S. Kim, C.-R. Lee, and S. U. Hong, J. Crystal Growth 305, 78 (2007).   DOI   ScienceOn
17 J. W. Oh, S. R. Kwon, M.-Y. Ryu, B. Jo, and J. S. Kim, J. Korean Vac. Soc. 20, 442 (2011).   DOI   ScienceOn
18 G. G. Tarasov, Yu. I. Mazur, Z. Ya. Zhuchenko, A. Maabdorf, D. Nickel, J. W. Tomm, H. Kissel, C. Walther, and W. T. Masselink, J. Appl. Phys. 88, 7162 (2000).   DOI
19 Y. C. Zhang, C. J. Huang, F. Q. Liu, B. Xu, J. Wu, Y. H. Chen, D. Ding, W. H. Jiang, X. L. Ye, and Z. G. Wang, J. Appl. Phys. 90, 1973 (2001).   DOI   ScienceOn
20 H. Y. Kim, M.-Y. Ryu, and J. S. Kim, J. Lumine. 132, 1759 (2012).   DOI