• Title/Summary/Keyword: quality control chart

Search Result 260, Processing Time 0.021 seconds

A VSR $\bar{X}$ Chart with Multi-state VSS and 2-state VSI Scheme

  • Lee, Jae-Heon;Park, Chang-Soon
    • Journal of Korean Society for Quality Management
    • /
    • v.32 no.4
    • /
    • pp.252-264
    • /
    • 2004
  • Variable sampling Interval (VSI) control charts vary the sampling interval according to value of the control statistic while the sample size is fixed. It is known that control charts with 2-state VSI scheme, which uses only two sampling intervals, give good statistical properties. Variable sample size (VSS) control charts vary the sample size according to value of the control statistic while the sampling interval is fixed. In the VSS scheme no optimal results are known for the number of sample sizes. It is also known that the variable sampling rate (VSR) $\bar{X}$ control chart with 2-state VSS and 2-state VSI scheme leads to large improvements In performance over the fixed sampling rate (FSR) $\bar{X}$ chart, but the optimal number of states for sample size Is not known. In this paper, the VSR Χ charts with multi-state VSS and 2-state VSI scheme are designed and compared to 2-state VSS and 2-state VSI scheme. The multi-state VSS scheme is considered to, achieve an additional improvement by switching from the 2-state VSS scheme. On the other hand, the multi-state VSI scheme is not considered because the 2-state scheme is known to be optimal. The 3-state VSS scheme improves substantially the sensitivity of the $\bar{X}$ chart especially for small and moderate mean shifts.

The Exponentially Weighted Moving Average Control Charts

  • Jeon, Jae-Kyeong;Goo, Bon-chul;Song, Suh-ill
    • Journal of Korean Society for Quality Management
    • /
    • v.19 no.2
    • /
    • pp.172-180
    • /
    • 1991
  • The null hypothesis being tested by $the{\bar{X}}$ control chart is that the process is in control at a quality level ${\mu}o$. An ${\bar{X}}control$ chart is a tool for detecting process average changes due to assingnable causes. The major weakness of $the{\bar{X}}$ control chart is that it is relatively insensitive to small changes in the population mean. This paper presents one way to remedy this weakness is to allow each plotted value to depend not only on the most recent subgroup average but on some of the other subgroup averages as well. Two approaches for doing this are based on (1) moving averages and (2) exponentially weighted moving averages of forecasting method.

  • PDF

Comparison of Statistical Process Control Techniques for Short Production Run (단기 생산공정에 활용되는 SPC 기법의 비교 연구)

  • Seo, Sun-Keun;Lee, Sung-Jae;Kim, Byung-Tae
    • Journal of Korean Society for Quality Management
    • /
    • v.28 no.2
    • /
    • pp.70-88
    • /
    • 2000
  • Short runs where it is neither possible nor practical to obtain sufficient subgroups to estimate accurately the control limit are common in modem business environments. In this study, the standardized control chart, Hillier's exact method, Q chart, EWMA(Exponentially Weighted Moving Average) chart for Q statistics and EWMA chart for mean and absolute deviation among many SPC(Statistical Process Control) techniques for short runs have been reviewed and advantages and disadvantages of these techniques are discussed. The simulation experiments to compare performances of these variable charts for process mean and variations are conducted for combination of subgroup size, scale and timing of shifts of process mean an/or standard deviation. Based upon simulation results, some guidelines for practitioners to choose short run SPC techniques are recommended.

  • PDF

$\bar{X}$ Control Chart with Runs Rules: A Review (규칙을 가진 $\bar{X}$ 관리도에 관한 통람)

  • Park, Jin-Young;Seo, Sun-Keun
    • Journal of Korean Society for Quality Management
    • /
    • v.40 no.2
    • /
    • pp.176-185
    • /
    • 2012
  • After a work of Derman and Ross(1997) that considered simple main runs rules and derived ARL (Average Run Length) using Markov chain modeling, $\bar{X}$ control chart based on diverse alternative main and supplementary runs rules that is the most popular control chart for monitoring the mean of a process are proposed. This paper reviews and discusses the-state-of-art researches for these runs rules and classifies according to several properties of runs rules. ARL derivation for a proposed runs rule is also illustrated.

CUSUM of Squares Chart for the Detection of Variance Change in the Process

  • Lee, Jeong-Hyeong;Cho, Sin-Sup;Kim, Jae-Joo
    • Journal of Korean Society for Quality Management
    • /
    • v.26 no.1
    • /
    • pp.126-142
    • /
    • 1998
  • Traditional statistical process control(SPC) assumes that consective observations from a process are independent. In industrial practice, however, observations are ofter serially correlated. A common a, pp.oach to building control charts for autocorrelatd data is to a, pp.y classical SPC to the residuals from a time series model fitted. Unfortunately, one cannot completely escape the effects of autocorrelation by using charts based on residuals of time series model. For the detection of variance change in the process we propose a CUSUM of squares control chart which does not require the model identification. The proposed CUSUM of squares chart and the conventional control charts are compared by a Monte Carlo simulation. It is shown that the CUSUM of squares chart is more effective in the presence of dependency in the processes.

  • PDF

Switching performances of multivarite VSI chart for simultaneous monitoring correlation coefficients of related quality variables

  • Chang, Duk-Joon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.2
    • /
    • pp.451-459
    • /
    • 2017
  • There are many researches showing that when a process change has occurred, variable sampling intervals (VSI) control chart is better than the fixed sampling interval (FSI) control chart in terms of reducing the required time to signal. When the process engineers use VSI control procedure, frequent switching between different sampling intervals can be a complicating factor. However, average number of samples to signal (ANSS), which is the amount of required samples to signal, and average time to signal (ATS) do not provide any control statistics about switching performances of VSI charts. In this study, we evaluate numerical switching performances of multivariate VSI EWMA chart including average number of switches to signal (ANSW) and average switching rate (ASWR). In addition, numerical study has been carried out to examine how to improve the performance of considered chart with accumulate-combine approach under several different smoothing constant and sample size. In conclusion, process engineers, who want to manage the correlation coefficients of related quality variables, are recommended to make sample size as large and smoothing constant as small as possible under permission of process conditions.

Adjustment of Control Limits for Geometric Charts

  • Kim, Byung Jun;Lee, Jaeheon
    • Communications for Statistical Applications and Methods
    • /
    • v.22 no.5
    • /
    • pp.519-530
    • /
    • 2015
  • The geometric chart has proven more effective than Shewhart p or np charts to monitor the proportion nonconforming in high-quality processes. Implementing a geometric chart commonly requires the assumption that the in-control proportion nonconforming is known or accurately estimated. However, accurate parameter estimation is very difficult and may require a larger sample size than that available in practice in high-quality process where the proportion of nonconforming items is very small. Thus, the error in the parameter estimation increases and may lead to deterioration in the performance of the control chart if a sample size is inadequate. We suggest adjusting the control limits in order to improve the performance when a sample size is insufficient to estimate the parameter. We propose a linear function for the adjustment constant, which is a function of the sample size, the number of nonconforming items in a sample, and the false alarm rate. We also compare the performance of the geometric charts without and with adjustment using the expected value of the average run length (ARL) and the standard deviation of the ARL (SDARL).

An Economic Design of the EWMA Control Charts with Variable Sampling Interval (VSI EWIMA 관리도의 경제적 설계)

  • 송서일;정혜진
    • Journal of Korean Society for Quality Management
    • /
    • v.30 no.4
    • /
    • pp.1-14
    • /
    • 2002
  • Traditional SPC techniques are looking out variation of process by fixed sampling interval and fixed sample size about every hour, the process of in-control or out-of-control couldn't be detected actually when the sample points are plotted near control limits, and it takes no notice of expense concerned with such sample points. In this paper, to overcome that, consider VSI(variable sampling interval) EWMA control charts which VSI method is applied. The VSI control charts use a short sampling internal if previous sample points are plotted near control limits, then the process has high probability of out-of-control. But it uses a long sampling interval if they are plotted near centerline of the control chart, since process has high possibility of in-control. And then a comparison and analysis between FSI(fixed sampling interval) and VSI EWMA in the statistical aspect and economic aspect is studied. Finally, we show that VSI EWMA control chart is more efficient than FSI EWMA control chart in the both aspects.

Cusum Control Chart for Monitoring Process Variance (공정분산 관리를 위한 누적합 관리도)

  • Lee, Yoon-Dong;Kim, Sang-Ik
    • Journal of Korean Society for Quality Management
    • /
    • v.33 no.3
    • /
    • pp.149-155
    • /
    • 2005
  • Cusum control chart is used for the purpose of controling the process mean. We consider the problem related to cusum chart for controling process variance. Previous researches have considered the same problem. The main difficulty shown in the related researches was to derive the ARL function which characterizes the properties of the chart. Sample variance, differently with sample mean, follows chi-squared type distribution, even when the quality characteristics are assumed to be normally distributed. The ARL function of cusum is described by a type of integral equation. Since the solution of the integral equation for non-normal distribution is not known well, people used simulation method instead of solving the integral equation directly, or approximation method by taking logarithm of the sample variance. Recently a new method to solve the integral equation for Erlang distribution was published. Here we consider the steps to apply the solution to the problem of controling process variance.

Cusum control chart for monitoring process variance (공정분산 관리를 위한 누적합 관리도)

  • Lee, Yoon-Dong;Kim, Sang-Ik
    • Proceedings of the Korean Society for Quality Management Conference
    • /
    • 2006.04a
    • /
    • pp.135-141
    • /
    • 2006
  • Cusum control chart is used for the purpose of controling the process mean. We consider the problem related to cusum chart for controling process variance. Previous researches have considered the same problem. The main difficulty shown in the related researches was to derive the ARL function which characterizes the properties of the chart. Sample variance, differently with sample mean, follows chi-squared type distribution, even when the quality characteristics are assumed to be normally distributed. The ARL function of cusum is described by a type of integral equation. Since the solution of the integral equation for non-normal distribution is not known well, people used simulation method instead of solving the integral equation directly, or approximation method by taking logarithm of the sample variance. Recently a new method to solve the integral equation for Erlang distribution was published. Here we consider the steps to apply the solution to the problem of controling process variance.

  • PDF