• 제목/요약/키워드: quadratic function equation

검색결과 114건 처리시간 0.03초

AN IMPROVED EXPONENTIAL REGULA FALSI METHODS WITH CUBIC CONVERGENCE FOR SOLVING NONLINEAR EQUATIONS

  • Ibrahim, S.A. Hoda
    • Journal of applied mathematics & informatics
    • /
    • 제28권5_6호
    • /
    • pp.1467-1476
    • /
    • 2010
  • The aim of this paper is to propose a cubic convergent regula falsi iterative method for solving the nonlinear equation f(x) = 0, where f : [a,b] $\subset$ R $\rightarrow$ R is a continuously differentiable. In [3,6] a quadratically convergent regula falsi iterative methods for solving this nonlinear equations is proposed. It is shown there that both the sequences of diameters and iterative points sequence converge to zero simultaneously. So The aim of this paper is to accelerate further the convergence of these methods from quadratic to cubic. This is done by replacing the parameter p in the iteration of [3,5,6] by a function p(x) defined suitably. The convergence analysis is carried out for the method. The method is tested on number of numerical examples and results obtained shows that our methods are better and more effective and comparable to well-known methods.

축류송풍기 설계를 위한 최적설계기법의 평가 (Assessment of Optimization Methods for Design of Axial-Flow Fan)

  • 최재호;김광용
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 1999년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.221-226
    • /
    • 1999
  • Three-dimensional flow analysis and numerical optimization methods are presented for the design of an axial-flow fan. Steady, Incompressible, three-dimensional Reynolds-averaged Wavier-Stokes equations are used as governing equations, and standard k-$\epsilon$ turbulence model is chosen as a turbulence model. Governing equations are discretized using finite volume method. Steepest descent method, conjugate gradient method and BFGS method are compared to determine the searching directions. Golden section method and quadratic fit-sectioning method are tested for one dimensional search. Objective function is defined as a ratio of generation rate of the turbulent kinetic energy to pressure head. Sweep angle distributions are used as design variables.

  • PDF

반응표면 분석법에 의한 crude papain 추출 조건의 최적화 (Optimization of Crude Papain Extraction from Papaya Latex Using Response Surface Methodology)

  • 오훈일;오상준;김정미
    • 한국식품과학회지
    • /
    • 제29권3호
    • /
    • pp.509-515
    • /
    • 1997
  • 식품공업과 의학, 의료, 화장품 등 많은 분야에서 널리 이용되고 있는 단백질 분해 효소의 하나인 papain을 papaya 유액으로부터 추출해내기 위한 최적 조건을 반응표면 분석법(RSM)을 이용하여 결정하였다. 중심 합성법에 의한 실험 계획을 설정하여 부분요인 실험법에 의하여 crude papain을 추출 및 분리하고 선정된 독립 인자의 반응 표면에 대한 영향을 분석하여 다중 회귀 분석으로 다음과 같은 모델식(Y)을 얻었으며, EDTA는 다중 회귀 분석에 의하여 제거되었다. $Y=29.0630-2.5812X_3+149.3208X_4+{13.1705X_1}^{2}+{0.0208X_3}^2-{9.8494X_4}^2$. 따라서 이 결과 papain 추출은 $NaHSO_3$, 농도가 4%, 추출 시간은 120분, pH는 7.6일때 최적 조건이 된다. 이러한 최적 추출 조건으로 얻은 효소 단백질 추출 양의 실험치는 793.16 mg prot./g latex로, 이는 효소 단백질 추출 예측치인 795.60 mg prot./g latex와 매우 근접한 값을 나타냄으로써 r=0.9951의 높은 상관 관계를 입증하였다.

  • PDF

완전제어형 식물공장에서 퀴노아 (Chenopodium quinoa Willd.)의 생장을 예측하기 위한 모델 개발 (Development of Models for Estimating Growth of Quinoa (Chenopodium quinoa Willd.) in a Closed-Type Plant Factory System)

  • 오스틴 지라파;조영열
    • 생물환경조절학회지
    • /
    • 제27권4호
    • /
    • pp.326-331
    • /
    • 2018
  • 작물 생육 모델은 작물의 생육을 이해하고 통합하기 위해 유용한 도구이다. 완전제어형 식물공장에서 엽채류로 활용하기 위한 퀴노아(Chenopodium quinoa Willd.)의 초장, 광합성률, 생장 모델을 예측하기 위한 모델을 1차식, 2차식 및 비선형 및 선형지수 등식을 사용하여 개발하였다. 식물 생육과 수량은 정식 후 5일간격으로 측정하였다. 광합성과 생장 곡선 모델을 계산하였다. 초장과 정식 후 일수(DAT)간의 선형 및 곡선 관계를 얻었으나, 초장을 정확하게 예측하기 위한 모델은 선형 등식이었다. 광합성률 모델을 비선형 등식을 선택하였다. 광보상점, 광포화점, 및 호흡률은 각각 29, 813 and $3.4{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$였다. 지상부 생체중과 건물중은 선형관계를 보였다. 지상부 건물중의 회귀계수는 0.75 ($R^2=0.921^{***}$)였다. 선형지수 수식을 사용하여 시간 함수에 따른 퀴노아의 지상부 건물중 증가를 비선형 회귀식으로 수행하였다. 작물생장률과 상대생장률은 각각 $22.9g{\cdot}m^{-2}{\cdot}d^{-1}$ and $0.28g{\cdot}g^{-1}{\cdot}d^{-1}$였다. 이러한 모델들은 정확하게 퀴노아의 초장, 광합성률, 지상부 생체중과 건물중을 예측할 수 있다.

2차원 트러스 구조물에 대한 제어/구조 시스템의 동시최적설계 (Simultaneous Optimal Design of Control-Structure Systems for 2-D Truss Structure)

  • 박중현;김순호
    • 제어로봇시스템학회논문지
    • /
    • 제7권10호
    • /
    • pp.812-818
    • /
    • 2001
  • This paper proposes an optimum design method of structural and control systems, taking a 2-D truss structure as an example. The structure is supposed to be subjected to initial static loads and disturbances. For the structure, a FEM model is formed, and using modal transformation, the equation of motion is transformed into that of modal coordinates in order to reduce the D.O.F. of the FEM model. The structure is controlled by an output feedback $H^$\infty$$ controller to suppress the effect of the disturbances. The design variables of the simultaneous optimal design of control-structure systems are the cross sectional areas of truss members. The structural objective function is the structural weight. The control objective function is the $H^$\infty$$ norm, that is, the performance index of control. The second structural objective function is the energy of the response related to the initial state, which is derived from the time integration of the quadratic form of the state in the closed-loop system. In a numerical example, simulations have been carried out. Through the consideration of structural weight and $H^$\infty$$ norm, an advantage of the simultaneous optimum design of structural and control systems is shown. Moreover, while the optimized performance index of control is almost kept, we can acquire better design of structural strength.

  • PDF

Optimal load distribution for two cooperating robot arms using force ellipsoid

  • Choi, Myoung-Hwan;Cho, Hye-Kyung;Lee, Bum-Hee;Ko, Myoung-Sam
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.1790-1795
    • /
    • 1991
  • The optimal load distribution for two cooperating robots is studied in this paper, and a new solution approach utilizing force ellipsoid is proposed. The load distribution problem is formulated as a nonlinear optimization problem with a quadratic cost function. The limit on instantaneous power is considered in the problem formulation as the joint torque constraints. The optimal solution minimizing energy consumption is obtained using the concept of force ellipsoid and the nonlinear optimization theory. The force ellipsoid provides a useful geometrical insight into the load distribution problem. Despite the presence of the joint torque constraints, the optimal solution is obtained almost as a closed form, in which the joint torques are given in terms of a single scalar parameter that can be obtained numerically by solving a scalar equation.

  • PDF

전기화학적 산화를 이용한 염료 처리에 중심합성설계와 반응표면분석법의 적용 (Application of the Central Composite Design and Response Surface Methodology to the Treatment of Dye Using Electrochemical Oxidation)

  • 김동석;박영식
    • 한국환경과학회지
    • /
    • 제18권11호
    • /
    • pp.1225-1234
    • /
    • 2009
  • The aim of this research was to apply experimental design methodology in the optimization condition of electrochemical oxidation of Rhodamine B(RhB). The reactions of electrochemical oxidation were mathematically described as a function of parameters amounts of current, NaCl dosage, pH and time being modeled by the use of the central composite design, which was used for fitting quadratic response surface model. The application of response surface methodology using central composite design(CCD) technique yielded the following regression equation, which is an empirical relationship between the removal efficiency of RhB and test variable in actual variables: RhB removal (%) = 3.977 + 23.279$\cdot$Current + 49.124$\cdot$NaCI - 5.539$\cdot$pH - 8.863$\cdot$time - 22.710$\cdot$Current$\cdot$NaCl + 5.409$\cdot$Current$\cdot$time + 2.390$\cdot$NaCl$\cdot$time + 1.061$\cdot$pH$\cdot$time - $0.570{\cdot}time^2$. The model predicted also agree with the experimentally observed result($R^2$ = 91.9%).

Higher order flutter analysis of doubly curved sandwich panels with variable thickness under aerothermoelastic loading

  • livani, Mostafa;MalekzadehFard, Keramat;Shokrollahi, Saeed
    • Structural Engineering and Mechanics
    • /
    • 제60권1호
    • /
    • pp.1-19
    • /
    • 2016
  • In this study, the supersonic panel flutter of doubly curved composite sandwich panels with variable thickness is considered under aerothermoelastic loading. Considering different radii of curvatures of the face sheets in this paper, the thickness of the core is a function of plane coordinates (x,y), which is unique. For the first time in the current model, the continuity conditions of the transverse shear stress, transverse normal stress and transverse normal stress gradient at the layer interfaces, as well as the conditions of zero transverse shear stresses on the upper and lower surfaces of the sandwich panel are satisfied. The formulation is based on an enhanced higher order sandwich panel theory and the vertical displacement component of the face sheets is assumed as a quadratic one, while a cubic pattern is used for the in-plane displacement components of the face sheets and the all displacement components of the core. The formulation is based on the von $K{\acute{a}}rm{\acute{a}}n$ nonlinear approximation, the one-dimensional Fourier equation of the heat conduction along the thickness direction, and the first-order piston theory. The equations of motion and boundary conditions are derived using the Hamilton principle and the results are validated by the latest results published in the literature.

[ $C^1$ ] Continuous Piecewise Rational Re-parameterization

  • Liang, Xiuxia;Zhang, Caiming;Zhong, Li;Liu, Yi
    • International Journal of CAD/CAM
    • /
    • 제6권1호
    • /
    • pp.59-64
    • /
    • 2006
  • A new method to obtain explicit re-parameterization that preserves the curve degree and parametric domain is presented in this paper. The re-parameterization brings a curve very close to the arc length parameterization under $L_2$ norm but with less segmentation. The re-parameterization functions we used are $C^1$ continuous piecewise rational linear functions, which provide more flexibility and can be easily identified by solving a quadratic equation. Based on the outstanding performance of Mobius transformation on modifying pieces with monotonic parametric speed, we first create a partition of the original curve, in which the parametric speed of each segment is of monotonic variation. The values of new parameters corresponding to the subdivision points are specified a priori as the ratio of its cumulative arc length and its total arc length. $C^1$ continuity conditions are imposed to each segment, thus, with respect to the new parameters, the objective function is linear and admits a closed-form optimization. Illustrative examples are also given to assess the performance of our new method.

모선 전력방정식을 제약조건으로 하는 경제적 발전력 연산방법 (Economic Generation Allocation with Power Equation Constraints)

  • 엄재선;김건중;이상중;최장흠
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제51권8호
    • /
    • pp.398-402
    • /
    • 2002
  • The ELD computation has been based upon the so-called B-coefficient which uses a quadratic approximation of system loss as a function of generation output. Direct derivation of system loss sensitivity based on the Jacobian-based method was developed in early 1970s', which could eliminate the dependence upon the approximate loss formula. However, both the B-coefficient and the Jacobian-based method require a complicated Procedure for calculating the system loss sensitivity included in the constraints of the optimization problem. In this paper, an ELD formulation in which only the bus power equations are defined as the constraints has been introduced. Derivation of the partial derivatives of the system loss with respect to the generator output and calculation of the penalty factors for individual generators are not required anymore in proposed method. A comprehensive solution procedure including calculation of the Jacobians and Hessians of the formulation has been presented in detail. Proposed ELD formulation has been tested on a sample system and the simulation indicated a satisfactory result.