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AN IMPROVED EXPONENTIAL REGULA FALSI METHODS

WITH CUBIC CONVERGENCE FOR SOLVING NONLINEAR

EQUATIONS

S. A. HODA IBRAHIM

Abstract. The aim of this paper is to propose a cubic convergent regula
falsi iterative method for solving the nonlinear equation f(x) = 0, where
f : [a, b] ⊂ < → < is a continuously differentiable. In [3,6] a quadrat-
ically convergent regula falsi iterative methods for solving this nonlinear
equations is proposed. It is shown there that both the sequences of diame-
ters and iterative points sequence converge to zero simultaneously. So The
aim of this paper is to accelerate further the convergence of these methods
from quadratic to cubic. This is done by replacing the parameter p in the
iteration of [3,5,6] by a function p(x) defined suitably. The convergence
analysis is carried out for the method. The method is tested on number
of numerical examples and results obtained shows that our methods are
better and more effective and comparable to well-known methods.

AMS Mathematics Subject Classification : 65D05, 49M15, 41A25, 35G20.
Key words and phrases : Nonlinear equations, Regula-falsi methods, New-
tons methods, Cubic convergence.

1. Introduction

In numerical analysis and applied mathematics, one of the most important
problems is to compute approximate solutions of the nonlinear of equation

f(x) = 0 (1)

where f : [a, b] ⊂ < → <. There exists a large number of applications that give
rise to thousands of such equations depending on one or more parameters.

Many optimization problems lead to the nonlinear equations. Iterative meth-
ods requiring one or more initial guesses for the desired root are generally used
to solve these equations.

All these methods satisfy a number of criteria such as they should enjoy good
convergence properties, be efficient and numerically stable. Bisection and regula
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falsi methods are globally convergent iterative methods used to find a simple
root of the nonlinear equation (1) by repeated linear interpolation between the
current bracketing estimates [5] . But their asymptotic convergence rate of
iterative sequence {(xn − α)}, where α be a simple root, is linear. Another
distinct shortcoming of these methods is that one endpoint is retained step after
step, whenever a concave or convex region of f(x) has been reached. Some
modifications overcoming these difficulties have been discussed in [3,5,6,7].

The well known quadratically convergent Newtons method and its variants
are iterative formulae generally used for finding a root of (1). But, these methods
may fail to converge in case the initial point is far from root or the derivative
vanishes in the vicinity of the root. A number of third order methods are also
used for solving nonlinear equations in R. Though, these methods require more
computational cost, they are advantageous in applications, such as stiff system of
equations, where quick convergence is required. A family of third order methods
is given by

xn+1 = xn −
{
(1 +

1

2

f
′′
(xn)f(xn)

f ′(xn)2
)

}
(2)

The derivative free methods to solve nonlinear equations in R are also developed
by many researchers [5 - 8]. The convergence of the sequences of diameters
{(an − bn)} is important from the analysis point of view to enclose the root α.
Some work in this direction is also being carried out. Recently, Chen and Li [3]
had developed a class of quadratically convergent exponential iterative methods
for finding a simple root α of a nonlinear equation f(x) = 0 in the interval [a,b].

These methods are then combined with classical regula falsi method to es-
tablish that both the sequence of diameters {(an− bn)} and sequence of iterates
{(xn − α)} produced by these methods asymptotically converges to the root.

The aim of this paper is to further accelerate the convergence of the methods
of Chen and Li [3] from quadratic to cubic along with both the sequence of
diameters and the sequence of iterates converging to zero. This is done by re-
placing the parameter p in their iteration by a function p(x) defined suitably.The
theoretical analysis and numerical experiments is given to show that our higher
order of exponential iterative methods is effective and comparable to those given
in [3] as well as Newtons method, and regula falsi method.

2. The Improved Method

Let α be a root of f(x) = 0 ∈ [a, b]. And let f(a)f(b) < 0 to guarantee that
α be a simple root of f(x) = 0 ∈ [a, b]. The iteration formulae with a parameter
under consideration of Chen and Li [4] is given by

xn+1 = xn exp

{
−f2(xn)

xn(pf2(xn) + f(xn)− f(xn − f(xn)))

}
, n = 0, 1, ... (3)
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Where p ∈ R , |p| < +∞. Let en = xn − α and f
′
(α) 6= 0, so for α 6= 0

lim
n→∞

en+1

e2n
= p+

f
′′
(α)

2f ′(α)
− f

′′
(α)

2
+

1

2α
(4)

Equation (4) means that the convergence of iterative equation (3) is of order

two. If we have p = − f
′′
(α)

2f ′ (α)
+ f

′′
(α)
2 − 1

2α , then the iteration (3) is at least

cubically convergent. As in [8], the parameter p at every step in (3) is chosen
pn = sign(f(xn) − f(xn − f(xn))) to be benefit to computing. Now we define
p(x) given by

p(x) = −f(x− f(x))[f(x− f(x)) + f(x+ f(x))− 2f(x)]

2[f(x)− f(x− f(x))]f2(x)
− 1

2x
(5)

from (4), we have

lim
n→∞

p(x) = − f
′′
(α)

2f ′(α)
+

f
′′
(α)

2
− 1

2α
(6)

This leads to the following modification of iteration (3)

xn+1 = xn exp

{
−f2(xn)

xn(p(xn)f2(xn) + f(xn)− f(xn − f(xn)))

}
, n = 0, 1.. (7)

The following theorem shows that this method is cubically convergent.

Theorem 1. Letf : [a, b] ⊂ R → R be a continuously differentiable and f(α) = 0

be its root. Let U(α) be a sufficiently small neighborhood of α such that f
′
(α) 6=

0,f
′′
(α) and f

′′′
(α) exist in U(α). Then the sequence of iteration generated by

iteration formula (7)with (5) is cubically convergent.

Proof. Let en = xn − α. Expanding left hand side by Taylor’s series, we get

f(xn) = f
′
(α)en +

f
′′
(α)

2
e2n +

f
′′′
(α)

6
e3n +O(e3n)

f(xn − f(xn)) = (1− f
′
(α))f

′
(α)en + (1− 3f

′
(α) + f

′2(α))
f

′
(α)f

′′
(α)

2
e2n +O(e2n)

f(xn + f(xn)) = (1 + f
′
(α))f

′
(α)en + (1 + 3f

′
(α) + f

′2(α))
f

′
(α)f

′′
(α)

2
e2n +O(e2n)

f2(xn) = f
′2(α)e2n + f

′
(α)f

′′
(α)e3n +O(e3n)

f(xn)− f(xn − f(xn)) = f
′2(α)en + (3f

′
(α)− f

′2(α))
f

′′
(α)

2
e2n +O(e2n)

f(xn)− f(xn − f(xn))

f(xn)
= f

′
(α)− (f

′
(α)− 2)

f
′′
(α)

2
en + (2f

′2(α)f
′′′
(α)

+ 6f
′′′
(α)− 3f

′′2(α)− 6f
′
(α)f

′′′
(α))

e2n
12

+O(e2n)
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So, we get

p(xn) = −1

2

(
(1− f

′
(α))

f
′′
(α)

f ′(α)
+

1

xn

)

+

(
f

′′2(α)

2f ′2(α)
+

f
′′′
(α)

2
− f

′′′
(α)

2f ′(α)
− f

′′2(α)

4f ′(α)

)
en +O(en)

and

f(xn)

p(xn)f(xn) +
f(xn)−f(xn−f(xn))

f(xn)

= en +
1

2xn
e2n +

(
f

′′2(α)

4f ′(α)
− f

′
(α)f

′′′
(α)

6
+

1

4x2
n
− f

′′2(α)

4f ′2(α)
+

f
′′′
(α)

6f ′(α)

)
e3n +O(e3n).

Expanding the exponential function in(7) by Taylor’s series,we get

xn+1 = xn exp





−f(xn)

xn(p(xn)f(xn) +
f(xn)−f(xn−f(xn))

f(xn)





= xn − f(xn)

p(xn)f(xn) +
f(xn)−f(xn−f(xn))

f(xn)

+
f2(xn)

2xn(p(xn)f(xn) +
f(xn)−f(xn−f(xn))

f(xn)
)2

+O





f2(xn)

2xn(p(xn)f(xn) +
f(xn)−f(xn−f(xn))

f(xn)
)2





This gives

en+1 =

{
f
′
(α)f

′′′
(α)

6 − f
′′2(α)

4f ′ (α)
+ f

′′2(α)
4f ′2(α)

+ 1
12x2

n
− f

′′′
(α)

6f ′ (α)

}
e3n +O(e3n).

Then

lim
n→∞

en+1

e3n
=

f
′′′
(α)

6f ′(α)
(f

′2(α)− 1) +
f

′′2(α)

4f ′2(α)
(1− f

′
(α)) +

1

12α2
. (8)

This shows that the iteration (7) with (5) is cubically convergent. 2

Remark. For a given hn > 0, we have a general formulae given by

xn+1 = xn exp

{
−hnf

2(xn)

xn(p(xn)f2(xn) + f(xn)− f(xn − hnf(xn)))

}
, n = 0, 1.. (9)

with

p(xn) =
{ f(xn − hnf(xn))[f(xn − f(xn)) + f(xn)) + f(xn + f(xn)) − 2f(xn)]

2[f(xn) − f(xn − f(xn))]f2(xn)

+
1

2xn

}
(−hn).

(10)
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The above results of p(xn) is slightly different from that given in (5). It’s easily
prove that the iteration formulae (9) with (10) is also cubically convergent.

3. Higher Order Algorithm

In this section , we shall describe the integration of the method (9)to achieve
asymptotic convergence of the sequence of diameters {(bn−an)} and the sequence
of points {(xn − α)} converging to zero. Let [a,b] contains a root of f(x) and
yn ∈ [an, bn] ⊂ [a, b] is produced at nth step of regula falsi method. Now,
we attempt to get a better enclosing interval by means of this point and our
method(9). Let

qn =
| f(xn) |

f(bn)− f(an)
, hn =

bn − an
| f(xn) |qn and yn = an − f(an)hn

Now, we define our iteration by

xn+1 = xnexp

{
− qn(bn − an)| f(xn) |
xn(p(xn)f2(xn) + f(xn)− f(yn))

}
, n = 0, 1, ... (11)

For computational purposes [5], the above iteration is described below in the algo-
rithmic form and is called Higher Order Exponential algorithm. Let α ∈ [a0, b0], n be
the number of iterates ε1 and ε2 are the accurate desired by the algorithm HOEXRF
to approximate α.

Algorithm HOEXRF
Begin
1. [Initialization]
n = 0, xn = an(orbn)
2. [Regula-Falsi Iteration]

yn = an − f(an)
an−bn

f(an)−f(bn)

3. [convergence Test]
If | f(yn) | ≤ ε1, then print yn as a root of (1). Stop.
4. If f(an)f(yn) < 0
¯an+1 = an, b̄n = yn

else ān = yn, b̄n = bn
5. [HOEXRF Iteration]

un = xnexp{− qn(bn−an)|f(xn)|
xn(p(xn)f2(xn)+f(xn)−f(yn))

}
6. If un ∈ [ān, b̄n], xn+1 = un

If f(ān)f(un) < 0
an+1 = ān, bn+1 = un

else
an+1 = un, bn+1 = b̄n
7. If un 6∈ [ān, b̄n]
an+1 = ān, bn+1 = b̄n
If un < ān

xn+1 = ān

else
xn+1 = b̄n
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8. [Convergence Test]
If | f(xn+1) |≤ ε1,or bn+1 − an+1 ≤ ε2, print xn+1 is a root and stop.
else increase n, go to step 2.
End.

4. Convergence Theorem

Before we give the convergence theorem , we present the following lemmas which
will be used for the proof of the cubic convergence theorem.

Lemma 1. Assume that f(α) = 0 and U(α) to be sufficiently small neighborhood of

α, if f
′′′
(x) is continuous in U(α) and f

′
(α) 6= 0. Then the sequence {xn} produced by

the iteration formula (9) is at least cubically convergent for hn > 0.

Lemma 2. Assume f(x) ∈ C1
[a,b] and f(a) < 0, f(b) > 0.{qn} is a real sequence with

0 < r < qn < q < 1. Then either the nonzero rootα of Eq.(1) in [a,b] is found in a finite
number of steps or sequence of diameters {(bn − an)}∞n=1 generated by the algorithm
HOEXRF converges to zero and

lim
n→∞

xn = lim
n→∞

an = lim
n→∞

bn = α, f(α) = 0

Proof. As the proof that given in [9], we can see that the algorithm produces a sequences
of {(bn − an)}∞n=1 and an iterative sequences xn such that at least we have

α ∈ [an+1, bn+1] ⊂ [an, bn] ⊂ ... ⊂ [a, b],

xn ∈ [an+1, bn+1] ⊂ [an, bn] ⊂ ... ⊂ [a, b],

f(an)f(bn) < 0, n = 0, 1, 2, ...,

an ≤ an+1 ≤ bn+1 ≤ bn,

bn+1 − an+1 ≤ qn(bn − an) < q(bn − an).

Since 0 < q < 1, we obtain that bn − an ≤ qn(b− a).This means that

lim
n→∞

(bn − an) = 0

and

lim
n→∞

an = lim
n→∞

bn = α.

So

lim
n→∞

xn = α, f(α) = 0.

2

Theorem 2. Under the hypothesis of lemma 2, assume that there exists a positive
integer N0 such that |f(vn)| < qn|f(xn)| whenever n > N0 and the algorithm HOEXRF
does not terminate after a finite number of steps. Then the sequence of diameter
{(bn − an)}∞n+1 converges Q-cubically to 0, there is a constant λ such that

bn+1 − an+1 ≤ λ(bn − an)
3, n = 0, 1, 2, ...
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Proof. From lemma 1 it follows that, see [2],[3] and [9],

lim
n→∞

en+1

e3n
= λ1

and

lim
n→∞

en+1 − en
(en − en−1)3

= −λ1

Then from eq.(8) it follows that:

lim
n→∞

en+1

e3n
=

f
′′′
(α)

6f ′(α)
(f

′2(α)− 1) +
f

′′2(α)

4f ′2(α)
(1− f

′
(α)) +

1

12α2
= λ1

and

lim
n→∞

en+1 − en
(en − en−1)3

= lim
n→∞

en+1/en − 1

e2n − 3enen−1 + 3e2n−1 − e3n−1/en
= −λ1.

So, there exists an integer N1 such that

| en+1 − en
(en − en−1)3

|<| λ1 | +1

and

| xn+2 − xn+1

(xn+1xn)3
|<| λ1 | +1,

whenever n > N1. From the assumption , whenever n > N0, we have

| f(yn) |< qn | f(xn) |, 0 < qn < 1.

From this inequality and lemma 2 ,we can deduce zn ∈ [ān, b̄n],
whenever n > max{N0, N1}, so xn+1 = zn and the above inequality means that

f(xn)− f(yn)

f(xn)
> 0

Using Taylor’s expansion of eq.(11), we have

xn+1 = xn − qn(bn − an)| f(xn) |
xn(p(xn)f2(xn) + f(xn)− f(yn))

+O

{
qn(bn − an)| f(xn) |

xn(p(xn)f2(xn) + f(xn)− f(yn))

}

So this gives

bn − an +O(bn − an) =
2(xn − xn+1)(p(xn)f

2(xn) + f(xn)− f(yn))

qn | f(xn) | ,

and then, it follows that

bn+1 − an+1 + o(bn+1 − an+1)

(bn − an + o(bn − an))3

=
q3n(xn+1 − xn+2)(p(xn+1)f

2(xn+1) + f(xn+1)− f(yn+1)) | f3(xn) |
qn+1(xn+1 − xn)3(p(xn)f2(xn) + f(xn)− f(yn))3| f(xn+1) |

Since

lim
n→∞

p(x) = − f
′′
(α)

2f ′(α)
+

f
′′
(α)

2
− 1

2α
= L,



1474 S. A. HODA IBRAHIM

then there exists an integer N2 such that | p(xn) |<| L | +1, when n > N2 and

| p(xn)f(xn) |+ 1− q ≤| p(xn)f
2(xn) |+ | f(xn)− f(yn) |

| f(xn) |

= | p(xn)f
2(xn) + f(xn)− f(yn)

f(xn)
|

≤ | p(xn)f(xn) |+ 1 + q.

From lemma 2, we know that

lim
n→∞

f(xn) = 0,

namely, there exists an integer N3 such that | f(xn) <
1−q
2

, where n > N3.
Then we have

1− q <| p(xn)f
2(xn) + f(xn)− f(yn)

f(xn)
|< 1 + q +

(1− q)(1+ | L |)
2

= λ3.

So

| (p(xn+1)f
2(xn+1) + f(xn+1)− f(yn+1))f

3(xn)

(p(xn)f2(xn) + f(xn)− f(yn))3f(xn)
| < 2 + 2q + (1− q)(1+ | L+ 1)

2(1− q)3

<
λ3

2(1− q)3
.

and if n > max{N0, N1, N2, N3}, then

| bn+1 − an+1 + o(bn+1 − an+1)

(bn − an + o(bn − an))3
|≤ q3(λ+ 1)(2 + 2q + (1− q)(1+ | L |))

8r(1− q)3
.

Let N = max {N0, N1, N2, N3} ,

λ ≥ max

{
q3(λ+ 1)(2 + 2q + (1− q)(1+ | L |))

8r(1− q)3
,

q

(bN − aN )

}
.

then we have bn+1 − an+1 ≤ λ(bn − an)
3, n = 0, 1, 2, .... 2

5. Numerical examples

The following examples are considered to show the effectiveness of our cubically
convergent method. Let x0 is the starting approximation to the root α.
Example(1): f(x) = x− esin(x) + 1, [a, b] = [1, 4]
Example(2): f(x) = 11x11 − 1, [a, b] = [0.1, 1]
Example(3): f(x) = xe−x − 0.1, [a, b] = [0, 1]

Example(4): f(x) = x2 − esin(x) + 1, [a, b] = [1, 4]
Example(5): f(x) = tan−1(x) + cos(x) + x− 3, [a, b] = [0.5, 4].

In the numerical experiments, the initial values of the iteration methods x0 = b, the
computing are taken as ε1 = ε2 = 1 × 10−15, the maximal iterative numbers are not
more than 100. Our methods HOEXRF, the methods of [1] called EXRF, Regula Falsi
called RF, and Newton’s methods for computing the results of examples 1-5 are given
in table 1, and table 2.

From the table 1, we can see that our methods HOEXRF requires less number of
iterations compared with the exponentially regula falsi iterative methods, the classical
regula falsi iterative methods and the Newton’s methods. And we can see also that our
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methods HOEXRF, have larger convergence fields, faster convergence speed, higher
convergence precision than all other methods in approximating the root.

Table 1.The numerical results of examples
Ex. HOEXRF EXRF

n xn | f(xn) | n xn | f(xn) |
1 4 1.697e+00 4.857e-17 7 1.697e+00 8.882e-16
2 9 8.042e-01 3.435e-16 20 8.042e-01 4.441e-16
3 4 1.118e-01 1.591e-17 4 1.118e-01 1.591e-16
4 3 1.253e+00 2.143e-17 19 1.253e+00 1.213e-17
5 4 1.558e+00 1.316e-11 7 1.558e+00 1.316e-09

Table 2.The numerical results of examples
Ex. RF Newton

n xn | f(xn) | n xn | f(xn) |
1 32 1.697e+00 4.441e-16 Not converges to α
2 101 8.042e-01 1.254e-13 7 8.042e-01 4.441e-01
3 15 1.118 e-01 7.495e-16 Divergent
4 100 1.253e+00 2.143e-10 Divergent
5 25 1.558e+00 1.342e-07 Divergent

6. Conclusions

A class of the cubic regula falsi methods for solving nonlinear equations in R is
described by combining the regula falsi method with an exponential iterative method.
This method is different from that given in [3]. The asymptotic convergence rate of
both the sequence of iterates {(xn − α)} and the sequence of diameter {(bn − an)}
is established to be cubically convergent to zero. This is a substantial improvement
over the results of [3]. An algorithm HOEXRF is also developed for computational
purposes. The algorithm is then tested on a number of numerical examples and the
results obtained up to the desired accuracy ε1 = ε2 = 1×10−15 are compared with our
method HEXRF, the method of [1] called EXRF, Regula falsi (RF) Newtons methods.
It is observed that our method takes less number of iterations and more effective in
comparison with these methods.
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