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Abstract 一 A new method to obtain explicit re-parameterization that preserves the curve degree and parametric domain is 
presented in this paper. The re-parameterization brings a curve very close to the arc length parameterization under L2 norm 
but with less segmentation. The re-parameterization functions we used are C1 continuous piecewise rational linear functions, 
which provide more flexibility and can be easily identified by solving a quadratic equation. Based on the outstanding 
performance of Mobius transformation on modifying pieces with monotonic parametric speed, we first create a partition of 
the original curve, in which the parametric speed of each segment is of monotonic variation. The values of new parameters 
corresponding to the subdivision points are specified a priori as the ratio of its cumulative arc length and its total arc length. 
C1 continuity conditions are imposed to each segment, thus, with respect to the new parameters, the objective function is linear 
and admits a closed-fbrm optimization. Illustrative examples are also given to assess the performance of our new method.
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1. Introduction

Parametric representation is one of the most common 
ways to describe curves in CAD/CAM and i■이ated 
areas. Arc length parameterization is the most nat나ral 
parameterization for a given curve beca니se of its nice 
mathematical properties and useful applications. For 
instance, in computer animation and computer numerical 
control machining, it is indispensable to have a control 
of the speed, which can be readily obtained from the 
arc length parameterization. However, the impossibility
[1] of constant parametric speed is a fundamental 
limitation to polynomial and rational curve parameter- 
izations. Therefore, a number of methods [2-4] have 
been proposed to obtain approximations of the arc­
length functions or inverses of the arc-length functions 
[5,6].

To obtain re-parameterization of a polynomial curve 
but still keeps its parameter domain and degree, 
Mobius transformation is a class of appropriate re­
parameterization functions. In [7], Faro니ki first introduces 
an optimality criterion to measure the deviation of a 
curve from its arc length parameterization. He also 
gives a method to obtain optimal parameterizations using 
Mobius transformation. Bert Juttier further derived a 
simplification of the method. Farouki's method is very 
attractive for its simplicity [8], unfortunately, it is also 
limited because the class of rational linear function is 
too small to achieve good approximation to arc-length 

parameterization. For higher order curves with several 
undulations in their parametric speeds above and below 
니nity, the method gives only negligible improvements.

Costantini et al. [9] expand the class of re-parameteri­
zation functions to the space of piecewise rational 
linear functions. They show that, for fixed knots, the 
optimal piecewise rational linear re-parame-terization 
can be defined by a simple recursion relation, but this 
representation is only C" continuous with respect to 
new parameters. In most applications, Cl continuous re- 
parameterizations with respect to new parameters are 
preferable. Tims some schemes to achieve Cl contin니ous 
re-parameterizations have also been proposed, however, 
objective functions of these schemes, which provides 
three sets of free parameters, are highly nonlinear and 
do not admit a closed-form optimization. In feet, for a 
pre-specified error, partitions using fixed knots usually 
give too many resid니al segments.

In this paper, we will first analyze some charac­
teristics of Mobi나s transformation, and their effects on 
parametric speed. Based on the outstanding perfor­
mance of Mobius transformation on modifying pieces 
with monotonic parametric speed, we create a partition 
of the original curve, in which the parametric speed of 
each segment is of monotonic variation. The values of 
new parameters corresponding to the subdivision points 
are specified a priori as the ratio of its cumulative arc 
length and its total arc length. C1 continuity conditions 
are imposed to each segment, thus, with respect to the 
new parameters, the objective function is linear and 
admits a closed-fbrm optimization. Illustrative examples 
are also given to assess the performance of sir new 
method.
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2. Preliminaries

Let r(t) fbr Z £ [0,1] be a regular parametric curve, 
and its normalized form be p(t) = r(t)/S, where 

(애力 is the total arc length of r(t).
We assume that p(t) is a polynomial Bezier curve of 

degree n

如=»枇海） co
k=0

where = ( " j/( 1 . Our objective is to obtain a

re-parameterization q(u) = p(t(u)) of p(t). which is an 
optimal approximation to its arc length parameterization.

As used in [7], the optimal criterion to measure the 
deviation of a curve from its arc length parameteri­
zation can be defined as

,• + y±7y(i-Y)
at points u*  = -■■一2 ] ,which lies to the left and right

of 以°。，respectively. Thus, the parametric speed is sped 
up over [0, w*]  and slowed down over ["*,  1], or vise 
versa. Therefore, we get the con이니sion that if the 
parametric speed with respect to the original parameters 
is monotonic, expression (4) can improve the parametric 
flow dramatically tp closer constant parametric flow; 
otherwise, the improvement is negligible.

In Figs. 1-2, we give two examples of parametric 
curve. For the curve in Fig. 1, the original polynomial 
parameterization has monotonically decreasing parametric 
speed. For the curve in Fig. 2, the original parameteri­
zation has several undulations in its parametric speed.

Now, we improve the parametric flow of these two 
curves by using Mobius transformation. And in Figs. 3 
and 4 we compare the parametric speeds of the original

丿= j:lp'(세以 (2)

As p(t) is normalization of r(t), where p(t) =r(t)/S, we 
know that ^p'(t^dt= 1 , which gives the obvious result 
J> 1. Thus, an optimal parameterization is a represe­
ntation that exhibits the least val나e for J among a given 
class of admissible parameterizations.

Mobius transformation, also known as bilinear transfor­
mation or linear fractional transformation, is an important 
class of elementary mapping. It can be expressed as the 

ratio of two linear expressions t = t(u) = , where ad 그나)c.

The most general form of Mobius transformation, 
which maps intervals t W [0, 1] and u U [0, l]onto each 
other, is (1)

6i一一-一一，--------- ■---------- -----------

5.5 -: -
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4 - •
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(2)

/ 、 (1 -y)w
'=W)=y(I)+(l 一沪 (3)

where 0 < /< 1. In particular it satisfies Z(0) = 0, f(l) = 1, 
and f(l/2) = 1- The inverse of expression (3) is

(l-Y)(l-0+y?

Now let us analyze how Mobius transformation can 
modify the speed variation. Substitute (3) into (1), we 
can obtain the re-parameterization of q(u). The derivative 
of q(u) is q'(u) = —^2.. From (3) we have 

dudt

으=_________ y(d___  (4)
血[y(l-w)+(l-y)M]2

Expression (4) is a modification factor to the original 
parametric speed. By a projective transformation of the 
parameter domain, we can figout that expression (4) has

Fig. 1. Parametric flow of curve 1 .(1) Original parametric flow, (2) 
Improved parametric flow using Mobius transformation.

Fig. 2. Parametric flow of curve 2. (1) Original parametric flow, 
(2) Improved parametric flow using Mobius transformation.

a double-pole at point u^ = y 
2y—1

and it becomes unity
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Solid curve: Original parametric speed,

Fig. 3. Parametric speed of curve 1.
Solid curve: Original parametric speed, Dashed curve: Improved 
parametric speed using Mobius transformation.

1 with monotonic parametric speed, the re-parameteri- 
zation using Mobius transformation gives a satisfactory 
result. However, fbr curve 2 with several undulations in 
its parametric speed, the re-parameterization only shows 
negligible improvement on the parametric flow of the 
origin이 curve.

3. C1 continuous piecewise rational 
re-parameterization

From section 2 we know, the class of rational linear 
function is too small to achieve good approximation to 
arclength parameterization, so re-parameterization functions 
with more flexibility, such as piecewise rational linear 
function, are needed. In this section, we will provide a 
flexible method with closed-form optimization to re­
parameterize the polynomial and rational parametric 
curves.

Similar to (3), we define a piecewise rational linear 
function as

Solid curve: Original parametric speed,

z、 颂1-泌 

心）F+展1或）+（i-成 (5)

« U—U；
where, u=~一2

From (5), we can derive

虹쓰—兰느立⑹

血。叫比.(］或)+ (1_的)讥2

To obtain C1 continuous transformation at points Uj (j 
=1,…，N -1), the following conditions must be satisfied

勺+1(1 一Yi)
为+1= -7--------n~；

勺%.+勺+1(1")

At
where m； = —- (j = 0,…,N).

△허J

Substituting (5) into (1), we get

Fig. 4. Parametric speed of curve 2.
Solid curve: Original parametric speed, Dashed curve: Improved 
parametric speed using Mobius transformation.

curve and that of improved curve. It is obvious that the 
parametric speed of curve 1 becomes flatter after applying 
re-parameterization, while the speed of curve 2 has no 
observable changes.

We also listed out the values of functions J of 
original curve and that of improved curve for curve 1 
and curve 2, respectively.

From Figs. 1-4 and Table 1 we can see that, fbr curve

Table 1. Values of J fbr curve 1 and curve 2

J Original curve Improved curve

Curve 1 1.3336 1.0028

Curve 2 1.57686 1.57684

q(어) =*(  히)) =

»/；)［先.(1或)+〃+1(1/•+］)亦［(『W仍+(i/+i)(i-y河 

k=0
肅飞.馈雄)

k=G

(8)
For the re-parameterization q(u) 그* (F(z/)), the optimal 

criterion J can be written as

，대I紀“可뼤务” (9)
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To obtain the least value fbr J, we will discuss how 
to determine the knots 而, 成 旳, •••, 이m and

3.1 Determining knots 知 …,加 and，知 …,uN

We begin with choosing the subdivision points 니sing 
piecewise rational re-parameterization. Without lose of 
generality, assume 0=击〈"〈...〈小=1 and ° = 히。 

<u\< …v 的v = 1, and denote Atj = tj+\A 一弓，Auj = 
Uj+i -Uj, fbrj = 0,…，N

To create a partition to the original curve, in which 
the parametric speed of each segment is of monotonic 
variation, we specify 弓(丿=1,…，丿V - 1) as roots of the 

equation ―-- --------

As we know that, for arc length parameterization, the 
points corresponding to equally spaced values of the 
parameter will be uniformly distributed along the 
curve. Thus, the corresponding new knots Uj are 
defined as

%

where s(弓)=卩性|打 are the cumulative arc-length 
functions. 。"제

(10)

3.2 Determining 丫加…，yN_i

Obviously, imposing C1 continuity conditions to piecewise 
rational re-parameterization incurs a dependency of para­
meters 处，yN-} on 为.Thus,为 is the only free para-meter 
that is used to minimize the v지ue of the function in (9).

Denote
사*' I湖S我 *=° 丄2

r -勺2

i M %

。0 = ©0= 1，。奸1 =沮0,…，m2k.

G)k+\ = "?iL m2丿t+i, k=Q, —,1_(7V—1) / 2j

L^-D^J 2
P= £ 一쁘 C&f 2 奸 1) 

k=0

Q= £ 쯸D 과+쓰쁘 B 旳 

k=G Wk (P k+\

L(N-1)/2」

R= £ m2k+1 ^2k+1)
k=G

Then, the problem to minimize function J possesses a 
global minimum 冷 This solution satisfies the eolation

씌 = 一些一尸+(1。)竺 q+2 人 = 0 (11)
d*  (7-Yo)甜 o Yo

The roots of eq니ation (11) are

n^Q+JPQ
Yo = ―2----------

m0Q~P
If /o e (0, 1), they identify the extrema of J.

(12)

3.3 Solutions to the re-parameterization

The above algorithm can be summarized as follows: 
Input: degree n and control points p0,…> Pn of 尸(#• 

Step 1. Compute knots of original parameter at subdivi­
sion points t0.tN\

Step 2. Compute knots of new parameter w0, 
corresponding to the original knots tN;

Step 3. Compute the values %o,…，Yn-i\
Outputs re-parameterized rational representation q(u).

4. Illustrative examples

To assess the performance of our new method, we 
will give a comparison of our method with rational 
linear re-parameterization [7] in this section.

Fig. 5 shows the parametric speed of curve 2 in 
Section 2. We can see that an improved parametric

Solid curve: the parametric speed of original curve,

Fig. 5. Parametric speed of curve 2.
Solid curve: the parametric speed of original curve, Dot-line curve: 
rational linear re-parameterization, Dashed curve: improved 
parametric speed using C1 continuous piecewise rational linear re­
parameterization.
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Fig. 6. Parametric flow of curve 2 obtained by new method.

Solid curve: the parametric speed of original curve, 
Dot-line curve: using rational linear re-parameterization,

Dashed curve: using C' continuous piecewise rational linear re-parameterization.

Fig. 7. Parametric speeds of curve 3.
Solid curve: the parametric speed of original curve, Dot-line curve-. 
using rational linear re-parameterization, Dashed curve: using C1 
continuous piecewise rational linear re-parameterization.
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08

06'

1 3
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Fig. 8. Parametric flows of curve 3.
(1) The original parametric flow, (2) The parametric flow using 
rational linear fiinction, (3) The parametric flow using C 
continuous piecewise rational linear re-parameterization.

speed is given by the new method. Fig. 6 shows the 
parametric flow of curve 2 obtained by the new

Table 2. Values of J fbr curve 2 and curve 3

Original Integral Piecewise
Curve 2 1.57686 1.57684 1.03153

Curve 3 1.17539 1.06339 1.00263

method.
In Figs. 7 and 8, we give out another example, say 

"curve 3\ Fig. 7 shows the parametric speed of original 
curve, the parametric speed obtained by rational linear 
re-parameterization, and the parametric speed obtained 
by the new method. Fig. 8 shows the corresponding 
parametric flow of curve 3.

In Table 2, we also give vahies of the J function of 
original curve, rational linear re-parameterization (integral), 
and C1 continuous piecewise rational linear re-para- 
meterization (piecewise) for curve 2 and curve 3.

5. Conclusions

In this paper, we present a Cl continuous piecewise 
rational linear re-parameterization, which provides 
more flexibility than rational linear re-parameterization 
and can be easily identified by solving a quadratic 
equation. A partition is done on the original curve, in 
which the parametric speed of each segment is of 
monotonic variation. It should be noted that, in order to 
satisfy a pre-specified error bound, further partitions 
could be 나sed as needed, which split each new 
parameter interval into halves. The values of new 
parameters corresponding to the subdivision points are 
specified a priori as the ratio of its cumulative arc 
length and its total arc length. Cl continuity conditions 
are imposed to each segment, thus, with respect to the 
new parameters, the objective function is linear and 
admits a closed-form optimization. Analysis of examples 
shows that 이h method brings a curve very close to the 
arc-length parameterization under L2 norm but with 
fewer segments.
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