• Title/Summary/Keyword: quadratic equation

Search Result 537, Processing Time 0.024 seconds

ON THE STABILITY OF 3-DIMENSIONAL QUADRATIC FUNCTIONAL EQUATION

  • Bae, Jae-Hyeong
    • Bulletin of the Korean Mathematical Society
    • /
    • v.37 no.3
    • /
    • pp.477-486
    • /
    • 2000
  • In this paper, we investigate the Hyers-Ulam-Rassias stability of a quadratic functional equation f(x+y+z)+f(x+y)+f(y-z)+f(z-x)=3f(x)+3f(y)+3f(z) and prove the Hyers-Ulam stability of the equation on restricted (unbounded) domains.

  • PDF

APPROXIMATE ADDITIVE MAPPINGS IN 2-BANACH SPACES AND RELATED TOPICS: REVISITED

  • YUN, SUNGSIK
    • Korean Journal of Mathematics
    • /
    • v.23 no.3
    • /
    • pp.393-399
    • /
    • 2015
  • W. Park [J. Math. Anal. Appl. 376 (2011) 193-202] proved the Hyers-Ulam stability of the Cauchy functional equation, the Jensen functional equation and the quadratic functional equation in 2-Banach spaces. But there are serious problems in the control functions given in all theorems of the paper. In this paper, we correct the statements of these results and prove the corrected theorems. Moreover, we prove the superstability of the Cauchy functional equation, the Jensen functional equation and the quadratic functional equation in 2-Banach spaces under the original given conditions.

An analysis on the secondary students' conceptualization level of the formula of quadratic equation based on Sfard's reification theory (Sfard의 구상화(Reification) 이론에 근거한 중·고등학생의 이차방정식 근의 공식 개념 형성 수준 분석)

  • Chang, Hyun Suk;Lee, Bongju
    • The Mathematical Education
    • /
    • v.57 no.3
    • /
    • pp.231-246
    • /
    • 2018
  • In this paper, we applied Sfard's reification theory to analyze the secondary students' level of conceptualization with regard to the formula of quadratic equation. Through the generation and development of mathematical concepts from a historical perspective, Sfard classified the formulation process into three stages of interiorization, condensation, and reification, and proposed levels of formulation. Based on this theory, we constructed a test tool reflecting the reversibility of the nature of manipulation of Piaget's theory as a criterion of content judgement in order to grasp students' conceptualization level of the formula of quadratic equation. By applying this tool, we analyzed the conceptualization level of the formula of quadratic equation of the $9^{th}$ and $10^{th}$ graders. The main results are as follows. First, approximately 45% of $9^{th}$ graders can not memorize the formula of quadratic equation, or even if they memorize, they do not have the ability of accurate calculation to apply for it. Second, high school curriculum requires for students to use the formula of the quadratic equation, but about 60% of $10^{th}$ graders have not reached at the level of reification that they can use the formula of quadratic equation. Third, as a result of imaginarily correcting the error of the previous concept, there was a change in the levels of $9^{th}$ graders, and there was no change in $10^{th}$ graders.