J. Korean Math. Sec. 38 (2001), No. 3, pp. 645656

HYERS-ULAM STABILITY OF THE
QUADRATIC EQUATION OF PEXIDER TYPE

SooN-MO JUNG AND PrasanNa K. SAHOO

ABSTRACT. In this paper, we will prove the Hyers-Ulam stability
of the quadratic functional equation of Pexider type, fi{x + ) +
folz —y} = fa(@) + faly).

1. Introduction

Given an operator T and a solution class {u} with the property that
T(u) = 0, when does |T'(v)]| < ¢ for an & > 0 imply that |lu —v| < é(g)
for some u and for some § > 07 This problem is called the stability of
the functional transformation. A great deal of work has been done in
connection with the ordinary and partial differential equations. In 1940
S. M. Ulam [23] asked the following problem: “Give conditions in order
for a linear mapping near an approximately linear mapping to exist.”
Further, in 1968 S. M. Ulam [24] proposed the general problem: “When
is it true that by changing a little the hypotheses of a theorem one can
still assert that the thesis of the theorem remains true or approximately
true?” In 1978 P. M. Gruber [10] proposed the following Ulam type
problem: “Suppose a mathematical object satisfies a certain property
approximately. Is it then possible to approximate this object by objecys,
satisfying the property exactly?” According to P. M. Gruber this kind
of stability problems is of particular interest in probability theory.

If f is a function from a normed vector space into a Banach space and
satisfies || f(z+y)— f(z)— f(y)|| < e, D. H. Hyers [11] proved that there
exists an additive function A such that ||f(z) — A(z)|| <e. If f(z) is a
real continuous function of z over R, and |f{z + vy} — f(z) — f(y)| <&,
it was shown by D. H. Hyers and S. M. Ulam [14] that there exists a
constant k such that | f(x) — kx| < 2e. Taking these results into account,
we say that the additive Cauchy equation f(z+y) = f(x)+ f(y) is stable
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in the sense of Hyers and Ulam. The interested reader should refer to
(7, 8, 9, 12, 13, 15, 16, 20] for an indepth account on the subject of
stability of functional equations.

The quadratic function f(x) = cz? (z € R) satisfies the functional
equation

(1) flz+y)+ flz—y) = 2f(z) +2f ().

Hence, the above equation is called the quadratic functional equation,
and every solution of the quadratic equation (1) is called a quadratic
function. It is well known that a function f : £; — E3 between vector
spaces is quadratic if and only if there exists a unique symmetric function
B : E; x Ey — E,, which is additive in z for each fixed y, such that
f(z) = B{z,z) for any « € B (see [1]).

In Section 2, we will introduce some theorems which are indispensable
for proving our main result of this paper. In the last section, we will
apply some ideas from [17} and [18] to the proof of Hyers-Ulam stability
of the quadratic functional equation of Pexider type, fi(z + y) + fo(z —

y) = fa(z) + faly).

2. Preliminaries

In 1941, D. H. Hyers [11] presented a celebrated theorem concerning
the stability of additive functions between Banach spaces. Later in 1987,
G. L. Forti [6] extended the domain of the relevant functions of Hyers's
theorem to an arbitrary amenable semigroup. Indeed, Forti proved the
following theorem:

THEOREM 1. Let G be an amenable semigroup and let £ be a Banach
space. If a function f : G — E satisfies the inequality

if(zy) — flz) - fWIl < ¢

for some ¢ > 0 and for all x,y € G, then there exists a unigue homo-
morphism H : G — E such that

1/ (z) - H{z)ll < €
forallz e G.

The Hyers-Ulam stability of the quadratic functional equation (1)
was first proved by F. Skof [22] for functions from a normed space into a
Banach space. P. W. Cholewa (3] demonstrated that Skof’s theorem is
also valid if the relevant domain is replaced by an abelian group. Later,
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S. Czerwik [4] proved the Hyers-Ulam-Rassias stability of the quadratic
functional equation which includes the following theorem as a special
case:

THEOREM 2. Let E; be a normed space and let Es be a Banach space.
If a function f : E1 — E salisfies the inequality

[f(z+y) + flz—y) - 2f(z) - 2f ()l < ¢

for some € > 0 and for all x,y € E1, then there exrists a unique quadratic
function @@ : By — Ey such that

1@ ~ Q@I < 3(=+ 1FO))

for all x € Ey. Moreover, if f(tx) is continuous in t for each fized
z € Eq, then Q(tx) = t2Q(z) for allt € R and z € E;.

Theorem of Czerwik was further generalized by J. M. Rassias [19],
and also by C. Borelli and G. L. Forti [2]. In [5], S. Czerwik investigated
the stability problem of the ‘partially pexiderized’ quadratic functional
equation, fi(z+y)+ fi(zx—y) = fa(z) + f2(y). For more information on
the stability of the quadratic functional equation, one can refer to [21].

3. Hyers-Ulam stability

In this section, let (E1, || - ||) be a real normed space and (Es, | - ||)
a Banach space.

In the following theorem, we will apply some ideas from [17] and [18]
to the proof of Hyers-Ulam stability of the quadratic functional equation
of Pexider type.

THEOREM 3. If functions fi, fa, fs, f1 : E1 — Lo satisfies the in-
equality

(2) Ifi(z +y) + falz —v) — fa(x) — falp)l] < ¢

for some e 2 0 and for all x,y € E1, then there exists a unique gquadratic
funciion Q : By — E3 and ezactly two additive functions Ay, As : By —
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Eo such that

([ f1(z) — Q(x) — A1(z) — Ao(a) — AL(O)]] < e,
[ folz) — Qz) — Ar(z) + Ag(z) — o(0)]] < 2B,
f3(2) - 2Q(@) ~ 241(2) ~ 5O} < e,

L 1fa(z) — 2Q(z) — 242(z) — f4(0)]] < 2

for all x € Ey. Moreover, if fs(tx) and fi(tz) are continuous in t € R
for each x € Ej, then the @ satisfies Q(tz) = t*Q(z) for all z € Ey
and A1, A are linear.

Proof. Let us define Fj(z) = fi(z) — f;(0), and by F? and F} denote
the even part and the odd part of F; for ¢ = 1,2,3,4. Then, we get
Fi(0)=Ff(0) = F?(0) =0fori=1,2,3,4.

By putting z = y = 0 in (2) and using the resulting inequality and
(2), we have

(4) |F1(z +y) + Falz —y) — Fa(z) — Fa(y}l| < 2¢

for all z,y € E;. First we replace = and y in (4) by -z and —y,
respectively, to get

(5) [Fi{~z —y) + Fa(~2 +y) — F3(—z) - Fu(~y)|| < 2.

Next we add (subtract) the argument of the norm of the inequality
(5) to (from) that of the inequality (4) and then taking the norm and
manipulating the resulting expression, we obtain

(6) Y (z +y) + F5 (@ — y) — F5(2) — F{(y)ll < 2,
(7) WY (z +y) + Fp(z —y) — F¥(z) - F{(y)ll < 2¢

for all z,y € F;.
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If we put ¥y = 0, z = 0 (and replace y by z), y =z, and ¥y = —z in
(6) respectively, then we get

(8) I£7 (=) + F3(z) — F5 (=)l < 2,
(9) £ () + F5 () — Fi(a}ll < 2,
(10) 1FT (22) — F5(z) — Fi(z)l < 2,
(11) 3 (22) — F5(z) - Fi(z)|| < 2

for all x € F), respectively.
In view of (8) and (9), we see that

(12) 1£5(z) — Fi(a}]l < 4e,
and it follows from (10) and (11) that
(13) £ (z) — F5(e) < 4e

for any x in ). By using (6), (12) and (13), we have

15 (z +y) + F5(z — y) — Ff(z) — F{(y)|
< (@ +y) + FE(z —y) — Fi(z) - F{()
+ 155 (z +y) — Fi{z + y)ll + ||F5 (z) — Fi(2)]
(14) < 10e.

By putting y = 0 in (14}, we get
(15) i2F5 (z) — Fi(z)|| < 10e.
Hence, (14) and (15) imply

|1FE(z +y) + Fi(z — y) — 2F(z) — 2F{ (y)||
< 2Bz +y) + F(z —y) — Fi(z) — F{(y)|
+ 1FE(z +y) — 2F5 (2 + )| + | Ff (z — y) — 2F5(z — y)
< 4

for all z,y € F;.
By Theorem 2, there exists a unique quadratic function Q : Fy, — Ey
such that

(16) IF() - 20@) < e
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for all £ € E;. Furthermore, if fy(tz) is continuous in £ € R for each
z € Ei, then the quadratic function Q satisfies Q(tz) = t*Q(x) for all
T € B

On account of (12), (13), (15) and (16), we get

|17 () — Q)

< 1@ - E@) + |F6) - 3R + 5750 - o
an < e
IF5(@) - Q@)
1) < |me-3Ee)| ] Ee-ew)| < Fe

(19) 1F5(2)—2Q)| < NF5(=)— Fi (@) +1Fi(z) - 2Q@)|| =< %s

for any z € E;.
As before, if we put y = 0, z = 0 (and replace y by z), ¥y = %, and

y = -z in (7) separately, then we obtain

(20) |F7(z) + F(z) — F5(2)]| < 2,
(21) |7 (z) - FE(z) — FE(z)|| < 2,
(22) [F7(22) — F(z) — F{(x)|| < 2,
(23) 175 (22) — Fg(z) + FE(z)l| < 2¢

for all x € F4, respectively.
Due to (20} and (21), we have

2FY () — F3(z) — F{ ()|
< ||FP(z) + F3(z) — Fy(x)|| + 17 (2) — Fg(z) — F2()l]
(24) < 4e
and
12F3 () — F5(z) + F7 (z)]
< ||F(z) + F(x) — F3 ()| + | F5 (z) + Fi(z) — FT(=)]|
(25) < 4e
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for each z ¢ E;.
Combining {(22) with (24) yields

175 (22) + F(2z) — 2F3(z) — 2F (z)|
< |Fg(2) + F(22) — 2F7(22)]|
+[2F7 (22) — 2F3 (z) — 2F{ (=)
(26) < 8.

Analogously, by (23) and (25), we get

1F3 (2z) — F{(2x) — 2F3 (z) + 28 (2)||
< ||F5(22) — FE(2z) — 2F3 (22)||
+[12F3 (2z) — 2F3 () + 2F{(=)|
(27) < 8

for any x € Eq. Now it follows from (26) and (27) that

IF32) 2B < | }Fce0) + 1 Re20) - F(o) - Fi(e)

+ H% Fo(23) %Ff(?a:) ~ F(z) + F2(x)

(28) < 8
and analogously
(29) | F{(2x) — 2Ff(2)]| < 8¢

for all z € E;.
In view of (7), (24), (25), (28), and (29), we have

| F5(z +y}+ Fi(x+y) + F3(z —y)
—F{(z —y) - F§(2z) — F{(2y)]|
< 2FY(z +y) + 2F (x — y) — 2F5(x) — 2F7(v)||
+ [|1F5(z +y) + F{(z +y) — 2F7(z +y
+ |1F3(z —y) — F{(z —y) — 2F)(x — y
+ 1285 (z) — Ff(2x))l + | 2F7 (y) — FE(2y))
(30) < 98¢
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for all z,y € E;. If we replace y in (30} by —y and then using the fact
that Fy is an odd function, we get

1E3(a ~y) + F3@ —y) + F§(@ +)
~F(a+y) — F(20) + F{(20)]
(31) < 28
From (30) and (31), we get
1F§(a +39) + F§(z — 1) - F§(20)]
= LB ty) + Fie ) + B —y) - F(o - )
~F§(20) ~ F{(29) + F3(s —y) + Fi(o — v)
+F(z +4) - Fi(w+y) — F3(22) + E(2)|
SIF (e — y) + F3(a — ) + Fi(@ +9) - Fi(e +v)

A

~F(2s) + @)l + Bz —v) + Fi(@ — 9)
+F5(z +y) — Fi(z +y) ~ F§(22) + F{ (2}
(32) < 28e.

Similarly, from (30) and (31), we get

|Ff(z +y) — Fi(z —y) — F2(2u)
= SIF(@+y) + P +y) + Fi(w - )
—F{(z —y) — F3(2z) — F{(2y)
APz —y)+ Fz —y)+ F(z +y)
—F{(z +y) — F£(2z) + F{ (2}l
%”F?f’(a: —y) + F{{z —y) + FF(z + )
—F{(z +y) — F§(2z) + F{(2y) |l
+3 B8 —y) + Rz — )+ Fi(e +v)
—Fy(x +y) — F§(2z) + F7(2y)||
(33) < 28e.

IA

By letting u = £ +y and v = z — y in (32), we obtain
[F5(u) + F3 (v} — F3(u +v)|| < 28¢
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for all u,v € E;. According to Theorem 1, there exists a unique additive
funetion A, : &y — FE> such that

(34) 1Fg () — 241(=)]| < 28¢

for all z in Ey. If, moreover, f3(tx) is continuous in ¢ € R for every fixed
x € F, then A; is a linear function.

By putting u = z — y and v = 2y in (33), we get
[F$(u+v) — Ff(u) - F{(v)| < 28¢

for all u,v € E;. By Theorem 1 again, there exists a unique additive
function A4s : Fy — E5 such that

(35) 175 (z) — 242(z)[| < 28e

for any z in E). Furthermore, if f4(tz) is continuous in ¢ € R for all
x € Eq, then A5 is also linear.
From (24), (25), (34) and (35) it follows that

[£7(z) — Ar(z) — Az(2)]

< |- rw- 1w+ 3@ - 2@
+ 3R - 4260
(36) < 30e
and
IFS (@) - Axla) + Aa(o)]
< |m@-3me+ 5me)] +3rE - 4
+ | 4ae) - SFg(2)
(37) < 30e

for each x in E.

The inequalities in {3) are direct consequences of the inequalities (16),
(17), (18), (19), (34), (35}, (36) and (37).

Now, let @', A}, A, : E1 — E; be another quadratic function and
additive functions, respectively, satisfying the inequalities in (3) instead
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of @, A; and A3. Then, we have
Q(x) + Az(w) - Q'(z) — Ay(=)|
< |3+ @@+ aata) + 310

+ H%ﬂ;(ax) — Q'(z) ~ Ay(z) - %ﬂx(O)H

124
(38} < 3¢
for each z € E;. Replacing x by —z in (38) and using the fact that
quadratic functions are even and additive functions are odd, we get

(39) Q) — As(e) - @) + @)l < e
From (38) and (39), we see that
1Q(z) — Q'(z)l]

= 11Q() + Aofe) - @ (@) - 4(2)
+Q(z) ~ Arfz) — Q'(0) + Ay(a))|

< 310 + Ax(e) - Q@) - (o))
+51Q() - Ax(@) = Q@) + A5(a)]
(40) < 1—24 £.

Similarly, again from (38) and (39), we get
l4o(z) — Aj()]
= 21Q) + 42(0) - Q@) - M)
Q@) ~ Ao(e) - Q=) + A@)}
$10(@) + Ax(z) - Q'(x) - Ay(a)]

+31Q(@) - Ax(z) - @(2) + A3)]
< 1—245
s &
Hence (40) and (41) imply that Q(z) = Q'(z) and Az(z) = Aj(z) for
every x € FE,. Similarly, we can show that Aj(z)} = Aj(z) for any
z € E;. Now the proof of the theorem is complete. g

A

(41)
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REMARK. Let us denote by f; = f; that fi(z) = f;(z) for all z € Ej.
We can easily verify the following statements:

(i} If f1 = f2 in Theorem 3, then Az =0,
(ii) If f3 = fa in Theorem 3, then Ay = Ag;
(iii) If 2f; = f3 in Theorem 3, then Ay = 0;
(iv) If 2fy = f4 in Theorem 3, then Ay = 24,;
(v) If 2f; = f4 in Theorem 3, then A; = 0;
(vi) If 2f; = f3 in Theorem 3, then Ay =0.
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