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HYERS-ULAM-RASSIAS STABILITY OF AN

ADDITIVE-QUARTIC, A QUADRATIC-QUARTIC, AND A

CUBIC-QUARTIC FUNCTIONAL EQUATION

Sun-Sook Jin and Yang-Hi Lee*

Abstract. In this paper, we investigate Hyers-Ulam-Rassias stability of

an additive-quartic functional equation, of a quadratic-quartic functional
equation, and of a cubic-quartic functional equation.

1. Introduction

Throughout this paper, let V,W be real vector spaces, X be a real normed
space, Y be a real Banach space, and k be a fixed real number such that k 6∈
{0, 1,−1}. For a given mapping f : V →W , we use the following abbreviations:

fo(x) :=
f(x)− f(−x)

2
, fe(x) :=

f(x) + f(−x)

2
,

Af(x, y) :=f(x+ y)− f(x)− f(y),

Qf(x, y) :=f(x+ y) + f(x− y)− 2f(x)− 2f(y),

Cf(x, y) :=f(x+ 2y)− 3f(x+ y) + 3f(x)− f(x− y)− 6f(y),

Q′f(x, y) :=f(x+ 2y)− 4f(x+ y) + 6f(x)− 4f(x− y) + f(x− 2y)− 24f(y),

Dkf(x, y) =f(x+ ky) + f(x− ky)− k2f(x+ y)− k2f(x− y) + 2(k2 − 1)f(x)

− f(ky)− k4 − 2k2 − k
2

f(y)− k4 − 2k2 + k

2
f(−y),

Ekf(x, y) =f(kx+ y) + f(kx− y)− k2f(x+ y)− k2f(x− y)− 2f(kx)

+ 2k2f(x) + 2(k2 − 1)f(y),
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Hkf(x, y) =f(kx+ y) + f(kx− y)− k2 + k

2
f(x+ y)− k2 − k

2
f(−x− y)

− k2 + k

2
f(x− y)− k2 − k

2
f(y − x)− (k4 + k3 − k2 − k)f(x)

− (k4 − k3 − k2 + k)f(−x) + (k2 − 1)f(y) + (k2 − 1)f(−y)

for all x, y ∈ V . Every solution of the functional equations Af(x, y) = 0,
Qf(x, y) = 0, Cf(x, y) = 0 and Q′f(x, y) = 0 are called an additive mapping,
a quadratic mapping, a cubic mapping and a quartic mapping, respectively.
If a mapping can be expressed by the sum of an additive mapping and quar-
tic mapping, the sum of a quadratic and quartic mapping, and the sum of a
cubic and quartic mapping, respectively, then we call the mapping an additive-
quartic mapping, a quadratic-quartic mapping and a cubic-quartic mapping,
respectively.

A functional equation is called an additive-quartic functional equation pro-
vided that each solution of that equation is an additive-quartic mapping and
every additive-quartic mapping is a solution of that equation. Some mathe-
maticians have investigated the stability of various types of the additive-quartic
functional equations [4, 3, 6].

A functional equation is called a quadratic-quartic functional equation pro-
vided that each solution of that equation is a quadratic-quartic mapping and
every quadratic-quartic mapping is a solution of that equation. M. E. Gordji
etc. [10] investigated the stability of the quadratic-quartic functional equation
E2f(x, y) = 0, and Abbaszadeh etc. [1], Gordji etc. [7] and Wang etc. [18] in-
vestigated the stability of the functional equation Ekf(x, y) = 0 on the various
spaces for k is a natural number. Many mathematicians have investigated the
stability of various types of the quadratic-quartic functional equations [13, 19].

A functional equation is called a cubic-quartic functional equation provided
that each solution of that equation is a cubic-quartic mapping and every cubic-
quartic mapping is a solution of that equation. Several mathematicians have
investigated the stability of various types of the cubic-quartic functional equa-
tions [8, 9, 20].In particular, Jang et al. [12], Lee et al. [14], and Park [15]
investigated the stability of the cubic-quartic functional equation H2f(x, y) = 0
on the various spaces.

A study on the stability of the functional equation starting from the Ulam’s
question [17] about the stability of the group homomorphisms obtained the
meaningful result about the stability of the Cauchy additive function equation
by Hyers [11] for the first time. Rassias then generalized Hyers’ results and
Găvruta [5] extended the results of Rassias. The concept of stability introduced
by Rassias [16] is referred to as the functional equation ‘Hyers-Ulam-Rassias
stability’.

In section 2, we will show that the functional equation Drf(x, y) = 0 is an
additive-quartic functional equation when r is a rational number and investigate



H-U-R STABILITY OF AN A-Q, A Q-Q, AND A C-Q FUNCTIONAL EQUATION 37

Hyers-Ulam-Rassias stability of that functional equation Dkf(x, y) = 0 when k
is a real number.

In section 3, we will show that the functional equation Erf(x, y) = 0 is a
quadratic-quartic functional equation when r is a rational number and inves-
tigate Hyers-Ulam-Rassias stability of that functional equation Ekf(x, y) = 0
when k is a real number.

In section 4, we will show that the functional equation Hrf(x, y) = 0 is a
cubic-quartic functional equation when r is a rational number and investigate
Hyers-Ulam-Rassias stability of that functional equation Hkf(x, y) = 0 when k
is a real number.

We need the following particular case of Baker’s theorem [2] to prove that
the functional equations Drf(x, y) = 0, Erf(x, y) = 0 and Hrf(x, y) = 0 are an
additive-quartic functional equation, a quadratic-quartic functional equation, a
cubic-quartic functional equation, respectively.

Theorem 1.1. (Theorem 1 in [2]) Suppose that V and W are vector spaces
over Q, R or C and α0, β0, . . . , αm, βm are scalar such that αjβl − αlβj 6= 0
whenever 0 ≤ j < l ≤ m. If fl : V →W for 0 ≤ l ≤ m and

m∑
l=0

fl(αlx+ βly) = 0

for all x, y ∈ V , then each fl is a “generalized” polynomial mapping of “degree”
at most m− 1.

The following corollary follows from Theorem 1.1.

Corollary 1.2. If a mapping f : V → W satisfies one of the functional equa-
tions Dkf(x, y) = 0, Ekf(x, y) = 0 and Hkf(x, y) = 0 for all x, y ∈ X, then f
is a “generalized” polynomial mapping of “degree” at most 4.

Baker [2] also states that if f is a “generalized” polynomial mapping of

“degree” at most m − 1, then f is expressed as f(x) = x0 +
∑m−1
l=1 a∗l (x) for

x ∈ V , where a∗l is a monomial mapping of degree l and f has a property

f(rx) = x0 +
∑m−1
l=1 rla∗l (x) for x ∈ V and r ∈ Q. Notice that a∗1, a∗2, a∗3 and

a∗4 are differently called an additive mapping, a quadratic mapping, a cubic
mapping and a quartic mapping, respectively.

Remark 1. Suppose that f1, f2, f3, f4 : V → W are generalized polynomial
mapping of degree at most 4 and r is a rational number such that r 6∈ {0, 1,−1}.
It is easily obtained that if the equalities f1(rx) = rf1(x), f2(rx) = r2f2(x),
f3(rx) = r3f3(x) and f4(rx) = r4f4(x) hold for all x ∈ V , then f1, f2, f3 and f4
are an additive mapping, a quadratic mapping, a cubic mapping and a quartic
mapping, respectively.
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2. Stability of an additive-quartic functional equation

We will prove that the functional equation Drf(x, y) = 0 is an additive-
quartic functional equation when r is a rational number.

Theorem 2.1. Let r be a rational number such that r 6∈ {0, 1,−1}. A mapping
f satisfies the functional equation Drf(x, y) = 0 for all x, y ∈ V if and only if
fo is an additive mapping and fe is a quartic mapping.

Proof. Assume that a mapping f : V → W satisfies the functional equa-

tion Drf(x, y) = 0 for all x, y ∈ V . Then f(0) = −Drf(0,0)
(r2−1)2 = 0. The

equalities fo(rx) = rfo(x) and fe(rx) = r4fe(x) follow from the equalities
fo(rx)− rfo(x) = −Drfo(0, x) and fe(rx)− r4fe(x) = Drfe(0, x) for all x ∈ V .
According to Corollary 1.2 and Remark 1, fo and fe are an additive mapping
and a quartic mapping, respectively.

Conversely, assume that fo is an additive mapping and fe is a quartic map-
ping, i.e. f is an additive-quartic mapping. Notice that equalities fo(rx) =
rfo(x), fo(x) = −fo(−x), fe(rx) = r4fe(x), fe(x) = fe(−x), and f(x) =
fo(x) + fe(x) hold for all x ∈ V and r ∈ Q.

First the equality Drfo(x, y) = 0 follows from the equality

Drfo(x, y) = −Afo(x+ ry, x− ry) + r2Afo(x+ y, x− y),

for all x, y ∈ V . Using mathematical induction, we obtain

Dnfe(x, y) = 0

from the equalities

D2fe(x, y) =Qfe(x, y),

D3fe(x, y) =D2fe(x+ y, y) +D2fe(x− y, y) + 4D2fe(x, y),

Dnfe(x, y) =Dn−1fe(x+ y, y) +Dn−1fe(x− y, y)−Dn−2fe(x, y)

+ (n− 1)2Qfe(x, y)

for all x, y ∈ V and all n ∈ N. Notice that if r ∈ Q, then there exist m,n ∈
N such that r = n

m or r = −n
m . Since the equalities D n

m
fe(x, y) = 0 and

D−n
m
fe(x, y) = 0 follow from the equalities

D n
m
fe(x, y) =Dnfe

(
x,

y

m

)
− n2

m2
Dmfe

(
x,

y

m

)
,

D−n
m
fe(x, y) =D n

m
fe(x, y)

for all x, y ∈ V and n,m ∈ N, we get Drfe(x, y) = 0 for all x, y ∈ V and r ∈ Q.
From the equality Drf(x, y) = Drfe(x, y)+Drfo(x, y), we obtain Drf(x, y) = 0
for all x, y ∈ V . �



H-U-R STABILITY OF AN A-Q, A Q-Q, AND A C-Q FUNCTIONAL EQUATION 39

For a given mapping f : X → Y , let Jnf : X → Y be the mappings defined
by
Jnf(x) =

1
2k

n
(
f(k−nx)− f(−k−nx)

)
+ 1

2k
4n
(
f(k−nx) + f(−k−nx)

)
if p > 4,

1
2k

n
(
f(k−nx)− f(−k−nx)

)
+ 1

2k
−4n(f(knx) + f(−knx)

)
if 1 < p < 4,

1
2k
−n(f(knx)− f(k−nx)

)
+ 1

2k
−4n(f(knx) + f(−knx)

)
if 0 ≤ p < 1

when |k| > 1 and
Jnf(x) =

1
2k

n
(
f(k−nx)− f(−k−nx)

)
+ 1

2k
4n
(
f(k−nx) + f(−k−nx)

)
if 0 ≤ p < 1,

1
2k

n
(
f(k−nx)− f(−k−nx)

)
+ 1

2k
−4n(f(knx) + f(−knx)

)
if 1 < p < 4,

1
2k
−n(f(knx)− f(k−nx)

)
+ 1

2k
−4n(f(knx) + f(−knx)

)
if p > 4

for all x ∈ X and all nonnegative integers n when |k| < 1. From this, if f(0) = 0,
then
Jnf(x)− Jn+1f(x) =

k4n+kn

2 Dkf(0,−k−n−1x) + k4n−kn
2 Dkf(0, k−n−1x) if p > 4,

kn

2 Dkf(0,−k−n−1x)− kn

2 Dkf(0, k−n−1x)
− 1

2k4n+4Dkf(0,−knx)− 1
2k4n+4Dkf(0, knx) if 1 < p < 4,

− 1+k3n+3

2k4n+4 Dkf(0,−knx)− 1−k3n+3

2k4n+4 Dkf(0, knx) if 0 ≤ p < 1

(1)

when |k| > 1 and
Jnf(x)− Jn+1f(x) =

k4n+kn

2 Dkf(0,−k−n−1x) + k4n−kn
2 Dkf(0, k−n−1x) if 0 ≤ p < 1,

k4n

2 Dkf(0,−k−n−1x) + k4n

2 Dkf(0, k−n−1x)
+ 1

2kn+1Dkf(0,−knx)− 1
2kn+1Dkf(0, knx) if 1 < p < 4,

− 1+k3n+3

2k4n+4 Dkf(0,−knx)− 1−k3n+3

2k4n+4 Dkf(0, knx) if p > 4

(2)

when |k| < 1. The following lemma follows from the above equality and the

equality f(x)− Jnf(x) =
∑n−1
i=0 (Jif(x)− Ji+1f(x)) for all x ∈ X.

Lemma 2.2. If f : X → Y is a mapping such that

Dkf(x, y) = 0

for all x, y ∈ X, then

Jnf(x) = f(x)

for all x ∈ X and all positive integers n.

From Theorem 2.1 and Lemma 2.2, we can prove the following stability
theorem, where k is a real number with k 6∈ {0, 1,−1}.
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Theorem 2.3. Let p 6∈ {1, 4} be a nonnegative real number. Suppose that
f : X → Y is a mapping such that

‖Dkf(x, y)‖ ≤ θ(‖x‖p + ‖y‖p)(3)

for all x, y ∈ X and f(0) = 0. Then there exists a unique solution mapping F
of the functional equation DkF (x, y) = 0 such that

‖f(x)− F (x)‖ ≤


θ‖x‖p

||k|4−|k|p| if p > 4,(
1

||k|−|k|p| + 1
||k|4−|k|p|

)
θ‖x‖p if 1 < p < 4,

θ‖x‖p
||k|−|k|p| if 0 ≤ p < 1

(4)

for all x ∈ X.

Proof. The proof of this theorem will be divided into two cases, either |k| > 1
or |k| < 1.
Case 1. Let |k| > 1. It follows from (1) and (3) that

‖Jnf(x)− Jn+1f(x)‖ ≤


|k|4nθ‖x‖p
|k|(n+1)p if p > 4,

|k|npθ‖x‖p
|k|4(n+1) + |k|nθ‖x‖p

|k|(n+1)p if 1 < p < 4,

|k|npθ‖x‖p
|k|n+1 if 0 ≤ p < 1

for all x ∈ X. Together with the equality Jnf(x)−Jn+mf(x) =
∑n+m−1
i=n (Jif(x)−

Ji+1f(x)) for all x ∈ X, we get

‖Jnf(x)− Jn+mf(x)‖ ≤


∑n+m−1
i=n

|k|4iθ‖x‖p
|k|(i+1)p if p > 4,∑n+m−1

i=n
|k|ipθ‖x‖p
|k|4(i+1) + |k|iθ‖x‖p

|k|(i+1)p if 1 < p < 4,∑n+m−1
i=n

|k|ipθ‖x‖p
|k|i+1 if 0 ≤ p < 1

(5)

for all x ∈ X. From (5), it follows that the sequence {Jnf(x)} is Cauchy for all
x ∈ X. Since Y is complete, the sequence {Jnf(x)} converges for all x ∈ X.
Hence we can define a mapping F : X → Y given by

F (x) := lim
n→∞

Jnf(x)
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for all x ∈ X. Moreover, letting n = 0 and passing the limit n → ∞ in (5) we
get (4). For the case p > 4, from the definition of F , we easily get

‖DkF (x, y)‖ = lim
n→∞

∥∥∥kn
2

(
Dkf

( x
kn
,
y

kn

)
−Dkf

(
− x

kn
,− y

kn

))
+
k4n

2

(
Dkf

( x
kn
,
y

kn

)
+Dkf

(
− x

kn
,− y

kn

))∥∥∥
≤ lim
n→∞

(|k|n + |k|4n)
θ(‖x‖p + ‖y‖p)

|k|np
=0

for all x, y ∈ X. For the other cases, we also easily show that DkF (x, y) = 0
by the similar method. Now let F ′ : X → Y be another solution mapping
satisfying (4). By Theorem 2.1 and Lemma 2.2, the equality F ′(x) = JnF

′(x)
holds for all n ∈ N. For the case p > 4, we have

‖Jnf(x)− F ′(x)‖ =‖Jnf(x)− JnF ′(x)‖

≤k
n

2

(
‖(f − F ′)(k−nx)‖+ ‖(f − F ′)(−k−nx)‖

)
+
k4n

2

(
‖(f − F ′)(k−nx)‖+ ‖(f − F ′)(−k−nx)‖

)
≤|k|

n + |k|4n

|k|np

(
1

||k| − |k|p|
+

1

||k|4 − |k|p|

)
θ‖x‖p

for all x ∈ X and all positive integer n. Taking the limit in the above inequality
as n → ∞, we can conclude that F ′(x) = limn→∞ Jnf(x) for all x ∈ X. For
the other cases, we also easily show that F ′(x) = limn→∞ Jnf(x) by the similar
method. This means that F (x) = F ′(x) for all x ∈ X.
Case 2. Let |k| < 1. It follows from (2) and (3) that

‖Jnf(x)− Jn+1f(x)‖ ≤


|k|nθ‖x‖p
|k|(n+1)p if 0 ≤ p < 1,

|k|4nθ‖x‖p
|k|(n+1)p + |k|npθ‖x‖p

|k|(n+1) if 1 < p < 4,

|k|npθ‖x‖p
|k|4n+4 if p > 4

for all x ∈ X. Together with the equality Jnf(x)−Jn+mf(x) =
∑n+m−1
i=n Jif(x)−

Ji+1f(x) for all x ∈ X, we get

‖Jnf(x)− Jn+mf(x)‖ ≤


∑n+m−1
i=n

|k|ipθ‖x‖p
|k|4(i+1) if p > 4,∑n+m−1

i=n
|k|4iθ‖x‖p
|k|(i+1)p + |k|ipθ‖x‖p

|k|(i+1) if 1 < p < 4,∑n+m−1
i=n

|k|iθ‖x‖p
|k|(i+1)p if 0 ≤ p < 1

(6)

for all x ∈ X. From (6), it follows that the sequence {Jnf(x)} is Cauchy for all
x ∈ X. Since Y is complete, the sequence {Jnf(x)} converges for all x ∈ X.
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Hence we can define a mapping F : X → Y given by

F (x) := lim
n→∞

Jnf(x)

for all x ∈ X. Moreover, letting n = 0 and passing the limit n → ∞ in (6) we
get (4). For the case p < 1, from the definition of F , we easily get

‖DkF (x, y)‖ = lim
n→∞

∥∥∥kn
2

(
Dkf

( x
kn
,
y

kn

)
−Dkf

(
− x

kn
,− y

kn

))
+
k4n

2

(
Dkf

( x
kn
,
y

kn

)
+Dkf

(
− x

kn
,− y

kn

))∥∥∥
≤ lim
n→∞

(|k|n + |k|4n)
θ(‖x‖p + ‖y‖p)

|k|np
=0

for all x, y ∈ X. For the other cases, we also easily show that DkF (x, y) = 0
by the similar method. Now let F ′ : X → Y be another solution mapping
satisfying (4). By Theorem 2.1 and Lemma 2.2, the equality F ′(x) = JnF

′(x)
holds for all n ∈ N. For the case p < 1, we have

‖Jnf(x)− F ′(x)‖ =‖Jnf(x)− JnF ′(x)‖

≤k
n

2

(
‖(f − F ′)(k−nx)‖+ ‖(f − F ′)(−k−nx)‖

)
+
k4n

2

(
‖(f − F ′)(k−nx)‖+ ‖(f − F ′)(−k−nx)‖

)
≤|k|

n + |k|4n

|k|np

(
1

||k| − |k|p|
+

1

||k|4 − |k|p|

)
θ‖x‖p

for all x ∈ X and all positive integer n. Taking the limit in the above inequality
as n → ∞, we can conclude that F ′(x) = limn→∞ Jnf(x) for all x ∈ X. For
the other cases, we also easily show that F ′(x) = limn→∞ Jnf(x) by the similar
method. This means that F (x) = F ′(x) for all x ∈ X. �

3. Stability of a quadratic-quartic functional equation

Throughout this section, for a given mapping f : V →W , we use the follow-
ing abbreviation:

∆f(x) :=
1

k4 − k2
(
− Ekfe(x, (k + 2)x)− Ekfe(x, (k − 2)x)− 4Ekfe(x, (k + 1)x)

− 4Ekfe(x, (k − 1)x) + 10Ekfe(x, kx) + Ekfe(2x, 2x) + 4Ekfe(2x, x)

− k2Ekfe(x, 3x)− 2(k2 + 1)Ekfe(x, 2x) + (17k2 − 8)Ekfe(x, x)
)

+
Ekf(0, 4x)− 20Ekf(0, 2x) + 64Ekf(0, x)

2(k2 − 1)
− (28k2 − 10)Ekf(0, 0)

2k2(k2 − 1)

(7)
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for all x, y ∈ V .

Theorem 3.1. Let k be a real number such that k 6∈ {0, 1,−1}. If a mapping
f satisfies the functional equation Ekf(x, y) = 0 for all x, y ∈ V , then f is a
quadratic-quartic mapping.

Proof. Assume that a mapping f : V → W satisfies the functional equation
Ekf(x, y) = 0 for all x, y ∈ V . Let g, h be the mappings defined by g(x) =
−f(2x)+16f(x)

12 and h(x) = f(2x)−4f(x)
12 , respectively. Then f = g+h, Ekg(x, y) =

0, Ekh(x, y) = 0, and ∆f(x) = 0 for all x, y ∈ V , where ∆f(x) is the mapping
defined in (7). The mappings g and h are generalized polynomial mappings of
degree at most 4 by Corollary 1.2. Through tedious calculations, we get the
equation

f(4x)− 20f(2x) + 64f(x) = ∆f(x)(8)

for all x ∈ V . So f(4x)− 20f(2x) + 64f(x) = 0, g(2x) = 4g(x), and h satisfies
h(2x) = 24h(x) for all x ∈ V . According to Remark 1, g is a quadratic mapping
and h is a quartic mapping, i.e. f is a quadratic-quartic mapping. �

We now show that the functional equation Erf(x, y) = 0 is a quadratic-
quartic functional equation in the following theorem.

Theorem 3.2. Let r be a rational number such that r 6∈ {0, 1,−1}. A mapping
f satisfies the functional equation Erf(x, y) = 0 for all x, y ∈ V if and only if
f is a quadratic-quartic mapping.

Proof. If a mapping f : V →W satisfies the functional equation Erf(x, y) = 0
for all x, y ∈ V , then f is a quadratic-quartic mapping by Theorem 3.1.

Conversely, assume that f is a quadratic-quartic mapping, i.e. there exist a
quadratic mapping g and a quartic mapping h such that f = g+h. Notice that
the equalities g(rx) = r2g(x), g(x) = g(−x), h(rx) = r4h(x), and h(x) = h(−x)
for all x ∈ V and r ∈ Q. Since Erg(x, y) = 0 is obtained from

Erg(x, y) = Qg(rx, y)− r2Qg(x, y)

for all x, y ∈ V , we now prove that Erh(x, y) = 0 for all x, y ∈ V . Let us first see
that Enh(x, y) = 0 is true for any natural number n 6= 1. Using mathematical
induction, the equality Enh(x, y) = 0 is derived from the equalities

E2h(x, y) =Q′h(x, y),

E3h(x, y) =E2h(x, x+ y) + E2h(x, y − x) + 4E2h(x, y),

Enh(x, y) =En−1h(x, x+ y) + En−1h(x, y − x)− En−2h(x, y)

+ (n− 1)2E2h(x, y)

for all x, y ∈ V . Let us now prove Erh(x, y) = 0 if r is a rational number such
that r 6∈ {0, 1,−1}. Notice that if r ∈ Q, then there exist m,n ∈ N such that
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r = n
m or r = −n

m . Since the equalities E n
m
f(x, y) = 0 and E−n

m
f(x, y) = 0 are

obtained from the equalities

E n
m
h(x, y) =Enh

( x
m
, y
)
− n2

m2
Emh

( x
m
, y
)
,

E−n
m
h(x, y) =E n

m
h(x, y)

for all x, y ∈ V and n,m ∈ N, we get Erh(x, y) = 0 for all x, y ∈ V . �

For a given mapping f : X → Y and a fixed positive real number p 6∈ {2, 4}
, let Jnf : X → Y be the mappings defined by

Jnf(x) =


42n+1−4n

3 f(2−nx)− 42n+2−4n+2

3 f(2−n−1x)
)

if p > 4,

− 4n−1

3

(
f(2−n+1x)− 16f(2−nx)

)
if 2 < p < 4,

16f(2nx)−f(2n+1x)
12·4n + f(2n+1x)−4f(2nx)

12·16n if 0 < p < 2

for all x ∈ X and all nonnegative integers n. Then, by the definition of Jnf
and (8), the equality

Jnf(x)− Jn+1f(x) =


4·16n

3 ∆f
(
2−n−2x

)
− 4n

3 ∆f
(
2−n−2x

)
if p > 4,

− 1
192·16n ∆f

(
2nx

)
− 4n−1

3 ∆f
(
2−n−1x

)
if 2 < p < 4,

1
48·4n ∆f

(
2nx

)
− 1

192·16n ∆f
(
2nx

)
if 0 < p < 2

(9)

for all x ∈ X and all nonnegative integers n. Therefore, together with the
equality f(x) − Jnf(x) =

∑n−1
i=0 (Jif(x) − Ji+1f(x)) for all x ∈ X, we obtain

the following lemma.

Lemma 3.3. If f : X → Y is a mapping such that

Ekf(x, y) = 0

for all x, y ∈ X, then

Jnf(x) = f(x)

for all x ∈ X and all positive integers n.

We can prove the main theorem, ‘Hyers-Ulam-Rassias stability of the func-
tional equation Ekf(x, y) = 0’ as the following theorem, where k is a real
number with k 6∈ {0, 1,−1}.

Theorem 3.4. Let X be a normed space and p a positive real number with
p 6∈ {2, 4}. Suppose that f : X → Y is a mapping such that

‖Ekf(x, y)‖ ≤ θ(‖x‖p + ‖y‖p)(10)
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for all x, y ∈ X. Then there exists a unique solution mapping F of the functional
equation EkF (x, y) = 0 such that

‖f(x)− F (x)‖ ≤


Kθ‖x‖p
3·2p

(
4

2p−16 −
1

2p−4
)

if p > 4,
Kθ‖x‖p

12

(
1

16−2p + 1
2p−4

)
if 2 < p < 4,

Kθ‖x‖p
12

(
1

16−2p + 1
4−2p

)
if 0 < p < 2

(11)

for all x ∈ X, where

K =
69k2 + 42 + (12k2 + 8)2p + k23p + k2

2 4p

|k4 − k2|

+
10|k|p + 4|k − 1|p + 4|k + 1|p + |k − 2|p + |k + 2|p

|k4 − k2|
.

Proof. From (7) and (10), we have

‖∆f(x)‖ =

∥∥∥∥ 1

k4 − k2
(
− E1,kfe(x, (k + 2)x)− Ekfe(x, (k − 2)x)

− 4Ekfe(x, (k + 1)x)− 4Ekfe(x, (k − 1)x) + 10Ekfe(x, kx)

+ Ekfe(2x, 2x) + 4Ekfe(2x, x)− 2(k2 + 1)Ekfe(x, 2x)

− k2Ekfe(x, 3x) + (17k2 − 8)Ekfe(x, x)
)
− (28k2 − 10)Ekf(0, 0)

2k2(k2 − 1)

+
Ekf(0, 4x)− 20Ekf(0, 2x) + 64Ekf(0, x)

2(k2 − 1)

∥∥∥∥
≤K‖x‖p

for all x ∈ X. It follows from (9) and (10) that

‖Jnf(x)− Jn+1f(x)‖ ≤


4n(4n+1−1)
3·2(n+2)p Kθ‖x‖p if p > 4,(

2np

12·16n+1 + 4n−1

3·2(n+1)p

)
Kθ‖x‖p if 2 < p < 4,

(4n+1−1)2np

3·42n+1 Kθ‖x‖p if 0 < p < 2

for all x ∈ X. Since the equality Jnf(x) − Jn+mf(x) =
∑n+m−1
i=n (Jif(x) −

Ji+1f(x)) holds for all x ∈ X, we get
‖Jnf(x)− Jn+mf(x)‖ ≤

∑n+m−1
i=n

4i(4i+1−1)
3·2(i+2)p Kθ‖x‖p if p > 4,∑n+m−1

i=n

(
2ip

12·16i+1 + 4i−1

3·2(i+1)p

)
Kθ‖x‖p if 2 < p < 4,∑n+m−1

i=n
(4i+1−1)2ip

3·42i+1 Kθ‖x‖p if 0 < p < 2

(12)

for all x ∈ X and n,m ∈ N ∪ {0}. It follows from (12) that the sequence
{Jnf(x)} is a Cauchy sequence for all x ∈ X. Since Y is complete, the sequence
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{Jnf(x)} converges for all x ∈ X. Hence we can define a mapping F : X → Y
by

F (x) := lim
n→∞

Jnf(x)

for all x ∈ X. Moreover, letting n = 0 and passing the limit n→∞ in (12) we
get the inequality (11). For the case 2 < p < 4, from the definition of F , we
easily get

‖EkF (x, y)‖ = lim
n→∞

∥∥∥4n

12

(
−Ekf

(
2x

2n
,

2y

2n

)
+ 16Ekf

( x
2n
,
y

2n

))
+
Ekf

(
2n+1x, 2n+1y

)
− 4Ekf (2nx, 2ny)

12 · 16n

∥∥∥
≤ lim
n→∞

(
4n(2p + 16)

12 · 2np
+

2np(2p + 4)

12 · 16n

)
θ(‖x‖p + ‖y‖p)

=0

for all x, y ∈ X. Also we easily show that EkF (x, y) = 0 by the similar method
for the other cases, either 0 < p < 2 or 4 < p. To prove the uniqueness of
F , let F ′ : X → Y be another solution mapping satisfying (11). Instead of
the condition (11), it is sufficient to show that there is a unique mapping that

satisfies condition ‖f(x)−F (x)‖ ≤ Kθ‖x‖p
12

(
1

|16−2p| +
1

|4−2p|
)

simply. By Lemma

3.3, the equality F ′(x) = JnF
′(x) holds for all n ∈ N. For the case p > 4, we

have

‖Jnf(x)− F ′(x)‖
=‖Jnf(x)− JnF ′(x)‖

≤42n+1 − 4n

3
‖(f − F ′)(2−nx)‖+

42n+2 − 4n+2

3
‖(f − F ′)(2−n−1x)‖

≤
(

42n+1 − 4n

3 · 2np
+

42n+2 − 4n+2

3 · 2(n+1)p

)
Kθ‖x‖p

12

( 1

|16− 2p|
+

1

|4− 2p|
)

≤ 42n+2

3 · 2np
Kθ‖x‖p

12

( 1

|16− 2p|
+

1

|4− 2p|
)

for all x ∈ X and all positive integer n. Taking the limit in the above inequality
as n → ∞, we can conclude that F ′(x) = limn→∞ Jnf(x) for all x ∈ X. For
the other cases, either 0 < p < 2 or 2 < p < 4, we also easily show that
F ′(x) = limn→∞ Jnf(x) by the similar method. This means that F (x) = F ′(x)
for all x ∈ X.

�

4. Stability of a cubic-quartic functional equation

Now we will show that the functional equation Hrf(x, y) = 0 is a cubic-
quartic functional equation when r is a rational number such that r 6∈ {0, 1,−1}.
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Theorem 4.1. Let r be a rational number such that r 6∈ {0, 1,−1}. A mapping
f : V → W satisfies the functional equation Hrf(x, y) = 0 for all x, y ∈ V if
and only if fo is a cubic mapping and fe is a quartic mapping.

Proof. Assume that a mapping f : V → W satisfies the functional equation
Hrf(x, y) = 0 for all x, y ∈ V . The equalities f(0) = 0, fo(rx) = r3fo(x) and
fe(rx) = r4fe(x) follow from the equalities

f(0) =
−Hrf(0, 0)

2r2(r2 − 1)
,

fo(rx)− r3fo(x) =
Hrf(x, 0)−Hrf(−x, 0)

4
,

fe(rx)− r4fe(x) =
Hrf(x, 0) +Hrf(−x, 0)

4

for all x ∈ V . The mappings fo and fe are generalized polynomial mappings of
degree at most 4 by Corollary 1.2, so fo is a cubic mapping and fe is a quartic
mapping by Remark 1.

Conversely, assume that fo is a cubic mapping and fe is a quartic mapping,
i.e., f is a cubic-quartic mapping. Notice that the equalities fo(rx) = r3fo(x),
fo(x) = −fo(−x), fe(rx) = r4fe(x), fe(x) = fe(−x), and f(x) = fo(x) + fe(x)
for all x ∈ V and r ∈ Q. Also we know that

Hrf(x, y) =Hrfe(x, y) +Hrfo(x, y),

Hrfo(x, y) =fo(rx+ y) + fo(rx− y)− rfo(x+ y)− rfo(x− y)− 2(r3 − r)fo(x),

Hrfe(x, y) =fe(rx+ y) + fe(rx− y)− r2fe(x+ y)

− r2fe(x− y)− 2(r4 − r2)fe(x) + 2(r2 − 1)fe(y)

for all x, y ∈ V .
Let us first prove Hnf(x, y) = 0 if n is a natural number. Using mathematical

induction, the equalities Hnfo(x, y) = 0 and Hnfe(x, y) = 0 follow from the
equalities

H2fo(x, y) =Cfo(y, x) + Cfo(−y, x),

H3fo(x, y) =Cfo(y − x, 2x),

Hnfo(x, y) =Hn−1fo(x, x+ y) +Hn−1fo(x, x− y)−Hn−2fo(x, y)

+ (n− 1)H2fo(x, y),

H2fe(x, y) =Qfe(y, x),

H3fe(x, y) =H2fe(x, x+ y) +H2fe(x, x− y) + 4H2fe(x, y),

Hnfe(x, y) =Hn−1fe(x, x+ y) +Hn−1fe(x, x− y)−Hn−2fe(x, y)

+ (n− 1)2H2fe(x, y)

for all x, y ∈ V and all n ∈ N. Let us now prove Hrf(x, y) = 0 if r is a
rational number such that r 6∈ {0, 1,−1}. Notice that if r ∈ Q, then there exist
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m,n ∈ N such that r = n
m or r = −n

m . Since the equalities H n
m
f(x, y) = 0 and

H−n
m
f(x, y) = 0 follow from the equalities

H n
m
fo(x, y) =Hnfo

( x
m
, y
)
− n

m
Hmfo

( x
m
, y
)
,

H n
m
fe(x, y) =Hnfe

( x
m
, y
)
− n2

m2
Hmfe

( x
m
, y
)
,

H−n
m
fo(x, y) =−H n

m
fo(x, y),

H−n
m
fe(x, y) =H n

m
fe(x, y)

for all x, y ∈ V and n,m ∈ N, we get Hrf(x, y) = 0 for all x, y ∈ V . �

For a given mapping f : X → Y and a fixed positive real number p 6∈ {3, 4},
let Jnf : X → Y be the mappings defined by
Jnf(x) =

1
2k

3n
(
f(k−nx)− f(−k−nx)

)
+ 1

2k
4n
(
f(k−nx) + f(−k−nx)

)
if p > 4,

1
2k

3n
(
f(k−nx)− f(−k−nx)

)
+ 1

2k
−4n(f(knx) + f(−knx)

)
if 3 < p < 4,

1
2k
−3n(f(knx)− f(k−nx)

)
+ 1

2k
−4n(f(knx) + f(−knx)

)
if 0 < p < 3

for all x ∈ X and all nonnegative integers n when |k| > 1 and
Jnf(x) =

1
2k

3n
(
f(k−nx)− f(−k−nx)

)
+ 1

2k
4n
(
f(k−nx) + f(−k−nx)

)
if 0 < p < 3,

1
2k
−3n(f(knx)− f(−knx)

)
+ 1

2k
4n
(
f(k−nx) + f(−k−nx)

)
if 3 < p < 4,

1
2k
−3n(f(knx)− f(k−nx)

)
+ 1

2k
−4n(f(knx) + f(−knx)

)
if p > 4

for all x ∈ X and all nonnegative integers n when |k| < 1. From the definition
of Jnf , if f(0) = 0, the equality
Jnf(x)− Jn+1f(x) =

k4n+k3n

4 Hkf(k−n−1x, 0) + k4n−k3n
4 Hkf(−k−n−1x, 0) if p > 4,

k3n

4 Hkf(k−n−1x, 0)− k3n

4 Hkf(−k−n−1x, 0)
− 1

4k4n+4Hkf(knx, 0)− 1
4k4n+4Hkf(−knx, 0) if 3 < p < 4,

− 1+kn+1

4k4n+4 Hkf(knx, 0)− 1−kn+1

4k4n+4 Hkf(−knx, 0) if 0 < p < 3

(13)



H-U-R STABILITY OF AN A-Q, A Q-Q, AND A C-Q FUNCTIONAL EQUATION 49

holds for all x ∈ X and all nonnegative integers n when |k| > 1 and
Jnf(x)− Jn+1f(x) =

k4n+k3n

4 Hkf(k−n−1x, 0) + k4n−k3n
4 Hkf(−k−n−1x, 0) if 0 < p < 3,

k4n

4 Hkf(k−n−1x, 0) + k4n

4 Hkf(−k−n−1x, 0)
− 1

4k3n+3Hkf(knx, 0) + 1
4k3n+3Hkf(−knx, 0) if 3 < p < 4,

− 1+kn+1

4k4n+4 Hkf(knx, 0)− 1−kn+1

4k4n+4 Hkf(−knx, 0) if p > 4

(14)

holds for all x ∈ X and all nonnegative integers n when |k| < 1. From the

above equality and the equality f(x)− Jnf(x) =
∑n−1
i=0 (Jif(x)− Ji+1f(x)) for

all x ∈ X, we obtain the following lemma.

Lemma 4.2. If f : X → Y is a mapping such that

Hkf(x, y) = 0

for all x, y ∈ X, then

Jnf(x) = f(x)

for all x ∈ X and all positive integers n.

From Theorem 4.1-Lemma 4.2, we can prove the following stability theorem,
where k is a real number with k 6∈ {0, 1,−1}.

Theorem 4.3. Let p 6∈ {3, 4} be a fixed positive real number. Suppose that
f : X → Y is a mapping such that

‖Hkf(x, y)‖ ≤ θ(‖x‖p + ‖y‖p)(15)

for all x, y ∈ X (and f(0) = 0 when p = 0). Then there exists a unique solution
mapping F of the functional equation HkF (x, y) = 0 such that

‖f(x)− F (x)‖ ≤


θ‖x‖p

2||k|4−|k|p| if p > 4,(
1

2||k|3−|k|p| + 1
2||k|4−|k|p|

)
θ‖x‖p if 3 < p < 4,

θ‖x‖p
2||k|3−|k|p| if 0 < p < 3

(16)

for all x ∈ X.

Proof. Note that f(0) = 0 follows from ‖2(k4 − k2)f(0)‖ = ‖Hkf(0, 0)‖ ≤ 0.
The proof of this theorem will be divided into two cases, either |k| > 1 or
|k| < 1.
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Case 1. Let |k| > 1. It follows from (13) and (15) that

‖Jnf(x)− Jn+1f(x)‖ ≤


|k|4nθ‖x‖p
2|k|(n+1)p if p > 4,

|k|npθ‖x‖p
2|k|4(n+1) + |k|3nθ‖x‖p

2|k|(n+1)p if 3 < p < 4,

|k|npθ‖x‖p
2|k|3n+3 if 0 < p < 3

for all x ∈ X. Together with the equality Jnf(x)−Jn+mf(x) =
∑n+m−1
i=n (Jif(x)−

Ji+1f(x)) for all x ∈ X, we get

‖Jnf(x)− Jn+mf(x)‖ ≤


∑n+m−1
i=n

|k|4iθ‖x‖p
2|k|(i+1)p if p > 4,∑n+m−1

i=n

(
|k|ipθ‖x‖p
2|k|4(i+1) + |k|3iθ‖x‖p

2|k|(i+1)p

)
if 3 < p < 4,∑n+m−1

i=n
|k|ipθ‖x‖p
2|k|3i+3 if 0 < p < 3

(17)

for all x ∈ X. It follows from (17) that the sequence {Jnf(x)} is a Cauchy
sequence for all x ∈ X. Since Y is complete, the sequence {Jnf(x)} converges
for all x ∈ X. Hence we can define a mapping F : X → Y by

F (x) := lim
n→∞

Jnf(x)

for all x ∈ X. Moreover, letting n = 0 and passing the limit n→∞ in (17) we
get the inequality (16). For the case 3 < p < 4, from the definition of F , we
easily get

‖HkF (x, y)‖ = lim
n→∞

∥∥∥k3n
2

(
Hkf

( x
kn
,
y

kn

)
−Hkf

(
− x

kn
,− y

kn

))
+
Hkf (knx, kny) +Hkf (−knx,−kny)

2k4n

∥∥∥
≤ lim
n→∞

(
|k|3n

|k|np
+
|k|np

|k|4n

)
θ(‖x‖p + ‖y‖p)

=0

for all x, y ∈ X. For the other cases, we also easily show that HkF (x, y) = 0 by
the similar method. Now let F ′ : X → Y be another solution mapping satisfying
(16). Instead of condition (16), it is sufficient to show that there is a unique map-

ping that satisfies condition ‖f(x) − F (x)‖ ≤
(

1
2||k|3−|k|p| + 1

2||k|4−|k|p|

)
θ‖x‖p

simply. By Lemma 4.2, the equality F ′(x) = JnF
′(x) holds for all n ∈ N. For
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the case p > 4, we have

‖Jnf(x)− F ′(x)‖ =‖Jnf(x)− JnF ′(x)‖

≤k
3n

2

(
‖(f − F ′)(k−nx)‖+ ‖(f − F ′)(−k−nx)‖

)
+

1

2k4n
(
‖(f − F ′)(knx)‖+ ‖(f − F ′)(−knx)‖

)
≤
(
|k|3n

|k|np
+
|k|np

|k|4n

)
(

1

2||k|3 − |k|p|
+

1

2||k|4 − |k|p|
)θ‖x‖p

for all x ∈ X and all positive integers n. Taking the limit in the above inequality
as n → ∞, we can conclude that F ′(x) = limn→∞ Jnf(x) for all x ∈ X. For
the other cases, we also easily show that F ′(x) = limn→∞ Jnf(x) by the similar
method. This means that F (x) = F ′(x) for all x ∈ X.
Case 2. Let |k| < 1. It follows from (14) and (15) that

‖Jnf(x)− Jn+1f(x)‖ ≤


|k|3nθ‖x‖p
2|k|(n+1)p if 0 < p < 3,

|k|4nθ‖x‖p
2|k|(n+1)p + |k|npθ‖x‖p

2|k|3(n+1) if 3 < p < 4,

|k|npθ‖x‖p
2|k|4n+4 if p > 4

for all x ∈ X. Together with the equality Jnf(x)−Jn+mf(x) =
∑n+m−1
i=n (Jif(x)−

Ji+1f(x)) for all x ∈ X, we get

‖Jnf(x)− Jn+mf(x)‖ ≤


∑n+m−1
i=n

|k|ipθ‖x‖p
2|k|4(i+1) if p > 4,∑n+m−1

i=n
|k|4iθ‖x‖p
2|k|(i+1)p + |k|ipθ‖x‖p

2|k|3(i+1) if 3 < p < 4,∑n+m−1
i=n

|k|3iθ‖x‖p
2|k|(i+1)p if 0 < p < 3

(18)

for all x ∈ X. It follows from (18) that the sequence {Jnf(x)} is a Cauchy
sequence for any x ∈ X. Since Y is complete, the sequence {Jnf(x)} converges
for any x ∈ X. Hence we can define a mapping F : X → Y by

F (x) := lim
n→∞

Jnf(x)

for all x ∈ X. Moreover, letting n = 0 and passing the limit n→∞ in (18), we
get (16). For the case p < 3, from the definition of F , we easily get

‖HkF (x, y)‖ = lim
n→∞

∥∥∥k3n
2

(
Hkf

( x
kn
,
y

kn

)
−Hkf

(
− x

kn
,− y

kn

))
+
k4n

2

(
Hkf

( x
kn
,
y

kn

)
+Hkf

(
− x

kn
,− y

kn

))∥∥∥
≤ lim
n→∞

(|k|3n + |k|4n)
θ(‖x‖p + ‖y‖p)

|k|np
=0
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for all x, y ∈ X. For the other cases, we also easily show that HkF (x, y) = 0 by
the similar method. Now let F ′ : X → Y be another solution mapping satisfying
(16). By Lemma 4.2, the equality F ′(x) = JnF

′(x) holds for all n ∈ N. For the
case 0 < p < 3, we have

‖Jnf(x)− F ′(x)‖ =‖Jnf(x)− JnF ′(x)‖

≤k
3n

2

(
‖(f − F ′)(k−nx)‖+ ‖(f − F ′)(−k−nx)‖

)
+
k4n

2

(
‖(f − F ′)(k−nx)‖+ ‖(f − F ′)(−k−nx)‖

)
≤|k|

3n + |k|4n

|k|np

(
1

2||k|3 − |k|p|
+

1

2||k|4 − |k|p|

)
θ‖x‖p

for all x ∈ X and all positive integer n. Taking the limit in the above inequality
as n → ∞, we can conclude that F ′(x) = limn→∞ Jnf(x) for all x ∈ X. For
the other cases, we also easily show that F ′(x) = limn→∞ Jnf(x) by the similar
method. This means that F (x) = F ′(x) for all x ∈ X. �
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