East Asian Math. J.
Vol. 36 (2020), No. 1, pp. 035-053
YNMS
http://dx.doi.org/10.7858/eamj.2020.004
HYERS-ULAM-RASSIAS STABILITY OF AN ADDITIVE-QUARTIC, A QUADRATIC-QUARTIC, AND A CUBIC-QUARTIC FUNCTIONAL EQUATION

Sun-Sook Jin and Yang-Hi Lee*

Abstract

In this paper, we investigate Hyers-Ulam-Rassias stability of an additive-quartic functional equation, of a quadratic-quartic functional equation, and of a cubic-quartic functional equation.

1. Introduction

Throughout this paper, let V, W be real vector spaces, X be a real normed space, Y be a real Banach space, and k be a fixed real number such that $k \notin$ $\{0,1,-1\}$. For a given mapping $f: V \rightarrow W$, we use the following abbreviations:

$$
\begin{aligned}
f_{o}(x):= & \frac{f(x)-f(-x)}{2}, \quad f_{e}(x):=\frac{f(x)+f(-x)}{2}, \\
A f(x, y):= & f(x+y)-f(x)-f(y), \\
Q f(x, y):= & f(x+y)+f(x-y)-2 f(x)-2 f(y), \\
C f(x, y):= & f(x+2 y)-3 f(x+y)+3 f(x)-f(x-y)-6 f(y), \\
Q^{\prime} f(x, y):= & f(x+2 y)-4 f(x+y)+6 f(x)-4 f(x-y)+f(x-2 y)-24 f(y), \\
D_{k} f(x, y)= & f(x+k y)+f(x-k y)-k^{2} f(x+y)-k^{2} f(x-y)+2\left(k^{2}-1\right) f(x) \\
& -f(k y)-\frac{k^{4}-2 k^{2}-k}{2} f(y)-\frac{k^{4}-2 k^{2}+k}{2} f(-y), \\
E_{k} f(x, y)= & f(k x+y)+f(k x-y)-k^{2} f(x+y)-k^{2} f(x-y)-2 f(k x) \\
& +2 k^{2} f(x)+2\left(k^{2}-1\right) f(y),
\end{aligned}
$$

[^0]\[

$$
\begin{aligned}
H_{k} f(x, y)= & f(k x+y)+f(k x-y)-\frac{k^{2}+k}{2} f(x+y)-\frac{k^{2}-k}{2} f(-x-y) \\
& -\frac{k^{2}+k}{2} f(x-y)-\frac{k^{2}-k}{2} f(y-x)-\left(k^{4}+k^{3}-k^{2}-k\right) f(x) \\
& -\left(k^{4}-k^{3}-k^{2}+k\right) f(-x)+\left(k^{2}-1\right) f(y)+\left(k^{2}-1\right) f(-y)
\end{aligned}
$$
\]

for all $x, y \in V$. Every solution of the functional equations $\operatorname{Af}(x, y)=0$, $Q f(x, y)=0, C f(x, y)=0$ and $Q^{\prime} f(x, y)=0$ are called an additive mapping, a quadratic mapping, a cubic mapping and a quartic mapping, respectively. If a mapping can be expressed by the sum of an additive mapping and quartic mapping, the sum of a quadratic and quartic mapping, and the sum of a cubic and quartic mapping, respectively, then we call the mapping an additivequartic mapping, a quadratic-quartic mapping and a cubic-quartic mapping, respectively.

A functional equation is called an additive-quartic functional equation provided that each solution of that equation is an additive-quartic mapping and every additive-quartic mapping is a solution of that equation. Some mathematicians have investigated the stability of various types of the additive-quartic functional equations $[4,3,6]$.

A functional equation is called a quadratic-quartic functional equation provided that each solution of that equation is a quadratic-quartic mapping and every quadratic-quartic mapping is a solution of that equation. M. E. Gordji etc. [10] investigated the stability of the quadratic-quartic functional equation $E_{2} f(x, y)=0$, and Abbaszadeh etc. [1], Gordji etc. [7] and Wang etc. [18] investigated the stability of the functional equation $E_{k} f(x, y)=0$ on the various spaces for k is a natural number. Many mathematicians have investigated the stability of various types of the quadratic-quartic functional equations $[13,19]$.

A functional equation is called a cubic-quartic functional equation provided that each solution of that equation is a cubic-quartic mapping and every cubicquartic mapping is a solution of that equation. Several mathematicians have investigated the stability of various types of the cubic-quartic functional equations [8, 9, 20].In particular, Jang et al. [12], Lee et al. [14], and Park [15] investigated the stability of the cubic-quartic functional equation $H_{2} f(x, y)=0$ on the various spaces.

A study on the stability of the functional equation starting from the Ulam's question [17] about the stability of the group homomorphisms obtained the meaningful result about the stability of the Cauchy additive function equation by Hyers [11] for the first time. Rassias then generalized Hyers' results and Găvruta [5] extended the results of Rassias. The concept of stability introduced by Rassias [16] is referred to as the functional equation 'Hyers-Ulam-Rassias stability'.

In section 2, we will show that the functional equation $D_{r} f(x, y)=0$ is an additive-quartic functional equation when r is a rational number and investigate

Hyers-Ulam-Rassias stability of that functional equation $D_{k} f(x, y)=0$ when k is a real number.

In section 3, we will show that the functional equation $E_{r} f(x, y)=0$ is a quadratic-quartic functional equation when r is a rational number and investigate Hyers-Ulam-Rassias stability of that functional equation $E_{k} f(x, y)=0$ when k is a real number.

In section 4, we will show that the functional equation $H_{r} f(x, y)=0$ is a cubic-quartic functional equation when r is a rational number and investigate Hyers-Ulam-Rassias stability of that functional equation $H_{k} f(x, y)=0$ when k is a real number.

We need the following particular case of Baker's theorem [2] to prove that the functional equations $D_{r} f(x, y)=0, E_{r} f(x, y)=0$ and $H_{r} f(x, y)=0$ are an additive-quartic functional equation, a quadratic-quartic functional equation, a cubic-quartic functional equation, respectively.

Theorem 1.1. (Theorem 1 in [2]) Suppose that V and W are vector spaces over \mathbb{Q}, \mathbb{R} or \mathbb{C} and $\alpha_{0}, \beta_{0}, \ldots, \alpha_{m}, \beta_{m}$ are scalar such that $\alpha_{j} \beta_{l}-\alpha_{l} \beta_{j} \neq 0$ whenever $0 \leq j<l \leq m$. If $f_{l}: V \rightarrow W$ for $0 \leq l \leq m$ and

$$
\sum_{l=0}^{m} f_{l}\left(\alpha_{l} x+\beta_{l} y\right)=0
$$

for all $x, y \in V$, then each f_{l} is a "generalized" polynomial mapping of "degree" at most $m-1$.

The following corollary follows from Theorem 1.1.
Corollary 1.2. If a mapping $f: V \rightarrow W$ satisfies one of the functional equations $D_{k} f(x, y)=0, E_{k} f(x, y)=0$ and $H_{k} f(x, y)=0$ for all $x, y \in X$, then f is a "generalized" polynomial mapping of "degree" at most 4 .

Baker [2] also states that if f is a "generalized" polynomial mapping of "degree" at most $m-1$, then f is expressed as $f(x)=x_{0}+\sum_{l=1}^{m-1} a_{l}^{*}(x)$ for $x \in V$, where a_{l}^{*} is a monomial mapping of degree l and f has a property $f(r x)=x_{0}+\sum_{l=1}^{m-1} r^{l} a_{l}^{*}(x)$ for $x \in V$ and $r \in \mathbb{Q}$. Notice that $a_{1}^{*}, a_{2}^{*}, a_{3}^{*}$ and a_{4}^{*} are differently called an additive mapping, a quadratic mapping, a cubic mapping and a quartic mapping, respectively.

Remark 1. Suppose that $f_{1}, f_{2}, f_{3}, f_{4}: V \rightarrow W$ are generalized polynomial mapping of degree at most 4 and r is a rational number such that $r \notin\{0,1,-1\}$. It is easily obtained that if the equalities $f_{1}(r x)=r f_{1}(x), f_{2}(r x)=r^{2} f_{2}(x)$, $f_{3}(r x)=r^{3} f_{3}(x)$ and $f_{4}(r x)=r^{4} f_{4}(x)$ hold for all $x \in V$, then f_{1}, f_{2}, f_{3} and f_{4} are an additive mapping, a quadratic mapping, a cubic mapping and a quartic mapping, respectively.

2. Stability of an additive-quartic functional equation

We will prove that the functional equation $D_{r} f(x, y)=0$ is an additivequartic functional equation when r is a rational number.

Theorem 2.1. Let r be a rational number such that $r \notin\{0,1,-1\}$. A mapping f satisfies the functional equation $D_{r} f(x, y)=0$ for all $x, y \in V$ if and only if f_{o} is an additive mapping and f_{e} is a quartic mapping.

Proof. Assume that a mapping $f: V \rightarrow W$ satisfies the functional equation $D_{r} f(x, y)=0$ for all $x, y \in V$. Then $f(0)=\frac{-D_{r} f(0,0)}{\left(r^{2}-1\right)^{2}}=0$. The equalities $f_{o}(r x)=r f_{o}(x)$ and $f_{e}(r x)=r^{4} f_{e}(x)$ follow from the equalities $f_{o}(r x)-r f_{o}(x)=-D_{r} f_{o}(0, x)$ and $f_{e}(r x)-r^{4} f_{e}(x)=D_{r} f_{e}(0, x)$ for all $x \in V$. According to Corollary 1.2 and Remark $1, f_{o}$ and f_{e} are an additive mapping and a quartic mapping, respectively.

Conversely, assume that f_{o} is an additive mapping and f_{e} is a quartic mapping, i.e. f is an additive-quartic mapping. Notice that equalities $f_{o}(r x)=$ $r f_{o}(x), f_{o}(x)=-f_{o}(-x), f_{e}(r x)=r^{4} f_{e}(x), f_{e}(x)=f_{e}(-x)$, and $f(x)=$ $f_{o}(x)+f_{e}(x)$ hold for all $x \in V$ and $r \in \mathbb{Q}$.

First the equality $D_{r} f_{o}(x, y)=0$ follows from the equality

$$
D_{r} f_{o}(x, y)=-A f_{o}(x+r y, x-r y)+r^{2} A f_{o}(x+y, x-y)
$$

for all $x, y \in V$. Using mathematical induction, we obtain

$$
D_{n} f_{e}(x, y)=0
$$

from the equalities

$$
\begin{aligned}
D_{2} f_{e}(x, y)= & Q f_{e}(x, y) \\
D_{3} f_{e}(x, y)= & D_{2} f_{e}(x+y, y)+D_{2} f_{e}(x-y, y)+4 D_{2} f_{e}(x, y) \\
D_{n} f_{e}(x, y)= & D_{n-1} f_{e}(x+y, y)+D_{n-1} f_{e}(x-y, y)-D_{n-2} f_{e}(x, y) \\
& +(n-1)^{2} Q f_{e}(x, y)
\end{aligned}
$$

for all $x, y \in V$ and all $n \in \mathbb{N}$. Notice that if $r \in \mathbb{Q}$, then there exist $m, n \in$ \mathbb{N} such that $r=\frac{n}{m}$ or $r=\frac{-n}{m}$. Since the equalities $D_{\frac{n}{m}}^{m} f_{e}(x, y)=0$ and $D_{\frac{-n}{m}} f_{e}(x, y)=0$ follow from the equalities

$$
\begin{aligned}
D_{\frac{n}{m}} f_{e}(x, y) & =D_{n} f_{e}\left(x, \frac{y}{m}\right)-\frac{n^{2}}{m^{2}} D_{m} f_{e}\left(x, \frac{y}{m}\right), \\
D_{\frac{-n}{m}} f_{e}(x, y) & =D_{\frac{n}{m}} f_{e}(x, y)
\end{aligned}
$$

for all $x, y \in V$ and $n, m \in \mathbb{N}$, we get $D_{r} f_{e}(x, y)=0$ for all $x, y \in V$ and $r \in \mathbb{Q}$. From the equality $D_{r} f(x, y)=D_{r} f_{e}(x, y)+D_{r} f_{o}(x, y)$, we obtain $D_{r} f(x, y)=0$ for all $x, y \in V$.

For a given mapping $f: X \rightarrow Y$, let $J_{n} f: X \rightarrow Y$ be the mappings defined by

$$
J_{n} f(x)=
$$

$$
\left\{\begin{array}{l}
\frac{1}{2} k^{n}\left(f\left(k^{-n} x\right)-f\left(-k^{-n} x\right)\right)+\frac{1}{2} k^{4 n}\left(f\left(k^{-n} x\right)+f\left(-k^{-n} x\right)\right) \quad \text { if } p>4 \\
\frac{1}{2} k^{n}\left(f\left(k^{-n} x\right)-f\left(-k^{-n} x\right)\right)+\frac{1}{2} k^{-4 n}\left(f\left(k^{n} x\right)+f\left(-k^{n} x\right)\right) \quad \text { if } 1<p<4 \\
\frac{1}{2} k^{-n}\left(f\left(k^{n} x\right)-f\left(k^{-n} x\right)\right)+\frac{1}{2} k^{-4 n}\left(f\left(k^{n} x\right)+f\left(-k^{n} x\right)\right) \quad \text { if } \quad 0 \leq p<1
\end{array}\right.
$$

when $|k|>1$ and
$J_{n} f(x)=$

$$
\left\{\begin{array}{lrr}
\frac{1}{2} k^{n}\left(f\left(k^{-n} x\right)-f\left(-k^{-n} x\right)\right)+\frac{1}{2} k^{4 n}\left(f\left(k^{-n} x\right)+f\left(-k^{-n} x\right)\right) & \text { if } 0 \leq p<1, \\
\frac{1}{2} k^{n}\left(f\left(k^{-n} x\right)-f\left(-k^{-n} x\right)\right)+\frac{1}{2} k^{-4 n}\left(f\left(k^{n} x\right)+f\left(-k^{n} x\right)\right) & \text { if } & 1<p<4, \\
\frac{1}{2} k^{-n}\left(f\left(k^{n} x\right)-f\left(k^{-n} x\right)\right)+\frac{1}{2} k^{-4 n}\left(f\left(k^{n} x\right)+f\left(-k^{n} x\right)\right) & \text { if } p>4
\end{array}\right.
$$

for all $x \in X$ and all nonnegative integers n when $|k|<1$. From this, if $f(0)=0$, then
$J_{n} f(x)-J_{n+1} f(x)=$

$$
\begin{cases}\frac{k^{4 n}+k^{n}}{2} D_{k} f\left(0,-k^{-n-1} x\right)+\frac{k^{4 n}-k^{n}}{2} D_{k} f\left(0, k^{-n-1} x\right) & \text { if } p>4, \tag{1}\\ \frac{k^{n}}{2} D_{k} f\left(0,-k^{-n-1} x\right)-\frac{k^{n}}{2} D_{k} f\left(0, k^{-n-1} x\right) & \\ -\frac{1}{2 k^{n+4}} D_{k} f\left(0,-k^{n} x\right)-\frac{1}{2 k^{4 n+4}} D_{k} f\left(0, k^{n} x\right) & \text { if } 1<p<4 \\ -\frac{1+k^{3 n+3}}{2 k^{4 n+4}} D_{k} f\left(0,-k^{n} x\right)-\frac{1-k^{3 n+3}}{2 k^{4 n+4}} D_{k} f\left(0, k^{n} x\right) & \text { if } 0 \leq p<1\end{cases}
$$

when $|k|>1$ and
$J_{n} f(x)-J_{n+1} f(x)=$
$(2)\left\{\begin{array}{lr}\frac{k^{4 n}+k^{n}}{2} D_{k} f\left(0,-k^{-n-1} x\right)+\frac{k^{4 n}-k^{n}}{2} D_{k} f\left(0, k^{-n-1} x\right) & \text { if } 0 \leq p<1, \\ \frac{k^{4 n}}{2} D_{k} f\left(0,-k^{-n-1} x\right)+\frac{k^{4 n}}{2} D_{k} f\left(0, k^{-n-1} x\right) & \\ +\frac{1}{2 k^{n+1}} D_{k} f\left(0,-k^{n} x\right)-\frac{1}{2 k^{n+1}} D_{k} f\left(0, k^{n} x\right) & \text { if } 1<p<4, \\ -\frac{1+k^{3 n+3}}{2 k^{4 n+4}} D_{k} f\left(0,-k^{n} x\right)-\frac{1-k^{3 n+3}}{2 k^{4 n+4}} D_{k} f\left(0, k^{n} x\right) & \text { if } p>4\end{array}\right.$
when $|k|<1$. The following lemma follows from the above equality and the equality $f(x)-J_{n} f(x)=\sum_{i=0}^{n-1}\left(J_{i} f(x)-J_{i+1} f(x)\right)$ for all $x \in X$.
Lemma 2.2. If $f: X \rightarrow Y$ is a mapping such that

$$
D_{k} f(x, y)=0
$$

for all $x, y \in X$, then

$$
J_{n} f(x)=f(x)
$$

for all $x \in X$ and all positive integers n.

From Theorem 2.1 and Lemma 2.2, we can prove the following stability theorem, where k is a real number with $k \notin\{0,1,-1\}$.

Theorem 2.3. Let $p \notin\{1,4\}$ be a nonnegative real number. Suppose that $f: X \rightarrow Y$ is a mapping such that

$$
\begin{equation*}
\left\|D_{k} f(x, y)\right\| \leq \theta\left(\|x\|^{p}+\|y\|^{p}\right) \tag{3}
\end{equation*}
$$

for all $x, y \in X$ and $f(0)=0$. Then there exists a unique solution mapping F of the functional equation $D_{k} F(x, y)=0$ such that
(4) $\|f(x)-F(x)\| \leq \begin{cases}\frac{\theta\|x\|^{p}}{\|\left. k\right|^{4}|k|^{p} \mid} & \text { if } p>4, \\ \left(\frac{1}{\| k\left|-|k|^{p}\right|}+\frac{1}{\|\left. k\right|^{4}-|k|^{p}}\right) \theta\|x\|^{p} & \text { if } 1<p<4, \\ \frac{\theta\|x\|^{p}}{\| k\left|-|k|^{p}\right|} & \text { if } 0 \leq p<1\end{cases}$
for all $x \in X$.

Proof. The proof of this theorem will be divided into two cases, either $|k|>1$ or $|k|<1$.
Case 1. Let $|k|>1$. It follows from (1) and (3) that

$$
\left\|J_{n} f(x)-J_{n+1} f(x)\right\| \leq \begin{cases}\frac{|k|^{4 n} \theta\|x\|^{p}}{|k|(n+1) p} & \text { if } p>4 \\ \frac{|k|^{n} \theta\|x\|^{p}}{|k|^{4 n}(n+1)} \\ \frac{|k|^{n} \theta\|x\|^{p}}{|k|^{n p+1) p}} & \text { if } 1<p<4 \\ |k|^{n+1} & \text { if } 0 \leq p<1\end{cases}
$$

for all $x \in X$. Together with the equality $J_{n} f(x)-J_{n+m} f(x)=\sum_{i=n}^{n+m-1}\left(J_{i} f(x)-\right.$ $\left.J_{i+1} f(x)\right)$ for all $x \in X$, we get

$$
\left\|J_{n} f(x)-J_{n+m} f(x)\right\| \leq \begin{cases}\sum_{i=n}^{n+m-1} \frac{|k|^{4 i} \theta\|x\|^{p}}{\left.|k|\right|^{(i+1) p}} & \text { if } p>4 \tag{5}\\ \sum_{i=n}^{n+m-1} \frac{|k|^{i p} \theta\|x\|^{p}}{\mid k k^{4(i+1)}}+\frac{|k|^{i} \theta\|x\|^{p}}{|k|^{(i+1) p}} & \text { if } 1<p<4 \\ \sum_{i=n}^{n+m-1} \frac{|k|^{p} \theta\|x\|^{p}}{|k|^{i+1}} & \text { if } 0 \leq p<1\end{cases}
$$

for all $x \in X$. From (5), it follows that the sequence $\left\{J_{n} f(x)\right\}$ is Cauchy for all $x \in X$. Since Y is complete, the sequence $\left\{J_{n} f(x)\right\}$ converges for all $x \in X$. Hence we can define a mapping $F: X \rightarrow Y$ given by

$$
F(x):=\lim _{n \rightarrow \infty} J_{n} f(x)
$$

for all $x \in X$. Moreover, letting $n=0$ and passing the limit $n \rightarrow \infty$ in (5) we get (4). For the case $p>4$, from the definition of F, we easily get

$$
\begin{aligned}
\left\|D_{k} F(x, y)\right\|= & \lim _{n \rightarrow \infty} \| \frac{k^{n}}{2}\left(D_{k} f\left(\frac{x}{k^{n}}, \frac{y}{k^{n}}\right)-D_{k} f\left(-\frac{x}{k^{n}},-\frac{y}{k^{n}}\right)\right) \\
& +\frac{k^{4 n}}{2}\left(D_{k} f\left(\frac{x}{k^{n}}, \frac{y}{k^{n}}\right)+D_{k} f\left(-\frac{x}{k^{n}},-\frac{y}{k^{n}}\right)\right) \| \\
\leq & \lim _{n \rightarrow \infty}\left(|k|^{n}+|k|^{4 n}\right) \frac{\theta\left(\|x\|^{p}+\|y\|^{p}\right)}{|k|^{n p}} \\
= & 0
\end{aligned}
$$

for all $x, y \in X$. For the other cases, we also easily show that $D_{k} F(x, y)=0$ by the similar method. Now let $F^{\prime}: X \rightarrow Y$ be another solution mapping satisfying (4). By Theorem 2.1 and Lemma 2.2, the equality $F^{\prime}(x)=J_{n} F^{\prime}(x)$ holds for all $n \in \mathbb{N}$. For the case $p>4$, we have

$$
\begin{aligned}
\left\|J_{n} f(x)-F^{\prime}(x)\right\|= & \left\|J_{n} f(x)-J_{n} F^{\prime}(x)\right\| \\
\leq & \frac{k^{n}}{2}\left(\left\|\left(f-F^{\prime}\right)\left(k^{-n} x\right)\right\|+\left\|\left(f-F^{\prime}\right)\left(-k^{-n} x\right)\right\|\right) \\
& +\frac{k^{4 n}}{2}\left(\left\|\left(f-F^{\prime}\right)\left(k^{-n} x\right)\right\|+\left\|\left(f-F^{\prime}\right)\left(-k^{-n} x\right)\right\|\right) \\
\leq & \frac{|k|^{n}+|k|^{4 n}}{|k|^{n p}}\left(\frac{1}{\| k\left|-|k|^{p}\right|}+\frac{1}{\|\left. k\right|^{4}-|k|^{p} \mid}\right) \theta\|x\|^{p}
\end{aligned}
$$

for all $x \in X$ and all positive integer n. Taking the limit in the above inequality as $n \rightarrow \infty$, we can conclude that $F^{\prime}(x)=\lim _{n \rightarrow \infty} J_{n} f(x)$ for all $x \in X$. For the other cases, we also easily show that $F^{\prime}(x)=\lim _{n \rightarrow \infty} J_{n} f(x)$ by the similar method. This means that $F(x)=F^{\prime}(x)$ for all $x \in X$.
Case 2. Let $|k|<1$. It follows from (2) and (3) that

$$
\left\|J_{n} f(x)-J_{n+1} f(x)\right\| \leq \begin{cases}\frac{|k|^{n} \theta\|x\|^{p}}{||k| n+1) p} & \text { if } 0 \leq p<1 \\ \frac{|k|^{4 n} \theta \mid x \|^{p}}{\left.|k|\right|^{(n+1) p}}+\frac{|k|^{n p} \theta\|x\|^{p}}{|k|^{(n+1)}} & \text { if } 1<p<4 \\ \frac{\left.|k|^{p} \theta\| \| x\right|^{p}}{|k|^{4 n+4}} & \text { if } p>4\end{cases}
$$

for all $x \in X$. Together with the equality $J_{n} f(x)-J_{n+m} f(x)=\sum_{i=n}^{n+m-1} J_{i} f(x)-$ $J_{i+1} f(x)$ for all $x \in X$, we get

$$
\left\|J_{n} f(x)-J_{n+m} f(x)\right\| \leq \begin{cases}\sum_{i=n}^{n+m-1} \frac{|k|^{i p} \theta\|x\|^{p}}{| |^{4}(i+1)} & \text { if } p>4 \tag{6}\\ \sum_{i=n}^{n+m-1} \frac{|k|^{4 i} \theta\|x\|^{p}}{|k|^{(i+1) p}}+\frac{|k|^{i p} \theta\|x\|^{p}}{\left.|k|\right|^{i+1}} & \text { if } 1<p<4 \\ \sum_{i=n}^{n+m-1} \frac{|k|^{i} \theta| | \mid \|^{p}}{\left.|k|\right|^{(i+1) p}} & \text { if } 0 \leq p<1\end{cases}
$$

for all $x \in X$. From (6), it follows that the sequence $\left\{J_{n} f(x)\right\}$ is Cauchy for all $x \in X$. Since Y is complete, the sequence $\left\{J_{n} f(x)\right\}$ converges for all $x \in X$.

Hence we can define a mapping $F: X \rightarrow Y$ given by

$$
F(x):=\lim _{n \rightarrow \infty} J_{n} f(x)
$$

for all $x \in X$. Moreover, letting $n=0$ and passing the limit $n \rightarrow \infty$ in (6) we get (4). For the case $p<1$, from the definition of F, we easily get

$$
\begin{aligned}
\left\|D_{k} F(x, y)\right\|= & \lim _{n \rightarrow \infty} \| \frac{k^{n}}{2}\left(D_{k} f\left(\frac{x}{k^{n}}, \frac{y}{k^{n}}\right)-D_{k} f\left(-\frac{x}{k^{n}},-\frac{y}{k^{n}}\right)\right) \\
& +\frac{k^{4 n}}{2}\left(D_{k} f\left(\frac{x}{k^{n}}, \frac{y}{k^{n}}\right)+D_{k} f\left(-\frac{x}{k^{n}},-\frac{y}{k^{n}}\right)\right) \| \\
\leq & \lim _{n \rightarrow \infty}\left(|k|^{n}+|k|^{4 n}\right) \frac{\theta\left(\|x\|^{p}+\|y\|^{p}\right)}{|k|^{n p}} \\
= & 0
\end{aligned}
$$

for all $x, y \in X$. For the other cases, we also easily show that $D_{k} F(x, y)=0$ by the similar method. Now let $F^{\prime}: X \rightarrow Y$ be another solution mapping satisfying (4). By Theorem 2.1 and Lemma 2.2, the equality $F^{\prime}(x)=J_{n} F^{\prime}(x)$ holds for all $n \in \mathbb{N}$. For the case $p<1$, we have

$$
\begin{aligned}
\left\|J_{n} f(x)-F^{\prime}(x)\right\|= & \left\|J_{n} f(x)-J_{n} F^{\prime}(x)\right\| \\
\leq & \frac{k^{n}}{2}\left(\left\|\left(f-F^{\prime}\right)\left(k^{-n} x\right)\right\|+\left\|\left(f-F^{\prime}\right)\left(-k^{-n} x\right)\right\|\right) \\
& +\frac{k^{4 n}}{2}\left(\left\|\left(f-F^{\prime}\right)\left(k^{-n} x\right)\right\|+\left\|\left(f-F^{\prime}\right)\left(-k^{-n} x\right)\right\|\right) \\
\leq & \frac{|k|^{n}+|k|^{4 n}}{|k|^{n p}}\left(\frac{1}{\| k\left|-|k|^{p}\right|}+\frac{1}{\|\left. k\right|^{4}-|k|^{p} \mid}\right) \theta\|x\|^{p}
\end{aligned}
$$

for all $x \in X$ and all positive integer n. Taking the limit in the above inequality as $n \rightarrow \infty$, we can conclude that $F^{\prime}(x)=\lim _{n \rightarrow \infty} J_{n} f(x)$ for all $x \in X$. For the other cases, we also easily show that $F^{\prime}(x)=\lim _{n \rightarrow \infty} J_{n} f(x)$ by the similar method. This means that $F(x)=F^{\prime}(x)$ for all $x \in X$.

3. Stability of a quadratic-quartic functional equation

Throughout this section, for a given mapping $f: V \rightarrow W$, we use the following abbreviation:

$$
\begin{align*}
\Delta f(x):= & \frac{1}{k^{4}-k^{2}}\left(-E_{k} f_{e}(x,(k+2) x)-E_{k} f_{e}(x,(k-2) x)-4 E_{k} f_{e}(x,(k+1) x)\right. \\
& -4 E_{k} f_{e}(x,(k-1) x)+10 E_{k} f_{e}(x, k x)+E_{k} f_{e}(2 x, 2 x)+4 E_{k} f_{e}(2 x, x) \\
& \left.-k^{2} E_{k} f_{e}(x, 3 x)-2\left(k^{2}+1\right) E_{k} f_{e}(x, 2 x)+\left(17 k^{2}-8\right) E_{k} f_{e}(x, x)\right) \\
(7) & \tag{7}\\
& +\frac{E_{k} f(0,4 x)-20 E_{k} f(0,2 x)+64 E_{k} f(0, x)}{2\left(k^{2}-1\right)}-\frac{\left(28 k^{2}-10\right) E_{k} f(0,0)}{2 k^{2}\left(k^{2}-1\right)}
\end{align*}
$$

for all $x, y \in V$.
Theorem 3.1. Let k be a real number such that $k \notin\{0,1,-1\}$. If a mapping f satisfies the functional equation $E_{k} f(x, y)=0$ for all $x, y \in V$, then f is a quadratic-quartic mapping.

Proof. Assume that a mapping $f: V \rightarrow W$ satisfies the functional equation $E_{k} f(x, y)=0$ for all $x, y \in V$. Let g, h be the mappings defined by $g(x)=$ $\frac{-f(2 x)+16 f(x)}{12}$ and $h(x)=\frac{f(2 x)-4 f(x)}{12}$, respectively. Then $f=g+h, E_{k} g(x, y)=$ $0, E_{k} h(x, y)=0$, and $\Delta f(x)=0$ for all $x, y \in V$, where $\Delta f(x)$ is the mapping defined in (7). The mappings g and h are generalized polynomial mappings of degree at most 4 by Corollary 1.2. Through tedious calculations, we get the equation

$$
\begin{equation*}
f(4 x)-20 f(2 x)+64 f(x)=\Delta f(x) \tag{8}
\end{equation*}
$$

for all $x \in V$. So $f(4 x)-20 f(2 x)+64 f(x)=0, g(2 x)=4 g(x)$, and h satisfies $h(2 x)=2^{4} h(x)$ for all $x \in V$. According to Remark $1, g$ is a quadratic mapping and h is a quartic mapping, i.e. f is a quadratic-quartic mapping.

We now show that the functional equation $E_{r} f(x, y)=0$ is a quadraticquartic functional equation in the following theorem.

Theorem 3.2. Let r be a rational number such that $r \notin\{0,1,-1\}$. A mapping f satisfies the functional equation $E_{r} f(x, y)=0$ for all $x, y \in V$ if and only if f is a quadratic-quartic mapping.

Proof. If a mapping $f: V \rightarrow W$ satisfies the functional equation $E_{r} f(x, y)=0$ for all $x, y \in V$, then f is a quadratic-quartic mapping by Theorem 3.1.

Conversely, assume that f is a quadratic-quartic mapping, i.e. there exist a quadratic mapping g and a quartic mapping h such that $f=g+h$. Notice that the equalities $g(r x)=r^{2} g(x), g(x)=g(-x), h(r x)=r^{4} h(x)$, and $h(x)=h(-x)$ for all $x \in V$ and $r \in \mathbb{Q}$. Since $E_{r} g(x, y)=0$ is obtained from

$$
E_{r} g(x, y)=Q g(r x, y)-r^{2} Q g(x, y)
$$

for all $x, y \in V$, we now prove that $E_{r} h(x, y)=0$ for all $x, y \in V$. Let us first see that $E_{n} h(x, y)=0$ is true for any natural number $n \neq 1$. Using mathematical induction, the equality $E_{n} h(x, y)=0$ is derived from the equalities

$$
\begin{aligned}
E_{2} h(x, y)= & Q^{\prime} h(x, y), \\
E_{3} h(x, y)= & E_{2} h(x, x+y)+E_{2} h(x, y-x)+4 E_{2} h(x, y), \\
E_{n} h(x, y)= & E_{n-1} h(x, x+y)+E_{n-1} h(x, y-x)-E_{n-2} h(x, y) \\
& +(n-1)^{2} E_{2} h(x, y)
\end{aligned}
$$

for all $x, y \in V$. Let us now prove $E_{r} h(x, y)=0$ if r is a rational number such that $r \notin\{0,1,-1\}$. Notice that if $r \in \mathbb{Q}$, then there exist $m, n \in \mathbb{N}$ such that
$r=\frac{n}{m}$ or $r=\frac{-n}{m}$. Since the equalities $E_{\frac{n}{m}} f(x, y)=0$ and $E_{\frac{-n}{m}} f(x, y)=0$ are obtained from the equalities

$$
\begin{aligned}
E_{\frac{n}{m}} h(x, y) & =E_{n} h\left(\frac{x}{m}, y\right)-\frac{n^{2}}{m^{2}} E_{m} h\left(\frac{x}{m}, y\right), \\
E_{\frac{-n}{m}} h(x, y) & =E_{\frac{n}{m}} h(x, y)
\end{aligned}
$$

for all $x, y \in V$ and $n, m \in \mathbb{N}$, we get $E_{r} h(x, y)=0$ for all $x, y \in V$.

For a given mapping $f: X \rightarrow Y$ and a fixed positive real number $p \notin\{2,4\}$, let $J_{n} f: X \rightarrow Y$ be the mappings defined by

$$
J_{n} f(x)= \begin{cases}\left.\frac{4^{2 n+1}-4^{n}}{3} f\left(2^{-n} x\right)-\frac{4^{2 n+2}-4^{n+2}}{3} f\left(2^{-n-1} x\right)\right) \text { if } p>4 \\ -\frac{4^{n-1}}{3}\left(f\left(2^{-n+1} x\right)-16 f\left(2^{-n} x\right)\right) & \text { if } 2<p<4 \\ \frac{16 f\left(2^{n} x\right)-f\left(2^{n+1} x\right)}{12 \cdot 4^{n}}+\frac{f\left(2^{n+1} x\right)-4 f\left(2^{n} x\right)}{12 \cdot 16^{n}} & \text { if } 0<p<2\end{cases}
$$

for all $x \in X$ and all nonnegative integers n. Then, by the definition of $J_{n} f$ and (8), the equality
$J_{n} f(x)-J_{n+1} f(x)= \begin{cases}\frac{4 \cdot 16^{n}}{3} \Delta f\left(2^{-n-2} x\right)-\frac{4^{n}}{3} \Delta f\left(2^{-n-2} x\right) & \text { if } p>4, \\ -\frac{1}{192 \cdot 16^{n}} \Delta f\left(2^{n} x\right)-\frac{4^{n-1}}{3} \Delta f\left(2^{-n-1} x\right) & \text { if } 2<p<4, \\ \frac{1}{48 \cdot 4^{n}} \Delta f\left(2^{n} x\right)-\frac{1}{192 \cdot 16^{n}} \Delta f\left(2^{n} x\right) & \text { if } 0<p<2\end{cases}$
for all $x \in X$ and all nonnegative integers n. Therefore, together with the equality $f(x)-J_{n} f(x)=\sum_{i=0}^{n-1}\left(J_{i} f(x)-J_{i+1} f(x)\right)$ for all $x \in X$, we obtain the following lemma.

Lemma 3.3. If $f: X \rightarrow Y$ is a mapping such that

$$
E_{k} f(x, y)=0
$$

for all $x, y \in X$, then

$$
J_{n} f(x)=f(x)
$$

for all $x \in X$ and all positive integers n.

We can prove the main theorem, 'Hyers-Ulam-Rassias stability of the functional equation $E_{k} f(x, y)=0^{\prime}$ as the following theorem, where k is a real number with $k \notin\{0,1,-1\}$.

Theorem 3.4. Let X be a normed space and p a positive real number with $p \notin\{2,4\}$. Suppose that $f: X \rightarrow Y$ is a mapping such that

$$
\begin{equation*}
\left\|E_{k} f(x, y)\right\| \leq \theta\left(\|x\|^{p}+\|y\|^{p}\right) \tag{10}
\end{equation*}
$$

for all $x, y \in X$. Then there exists a unique solution mapping F of the functional equation $E_{k} F(x, y)=0$ such that

$$
\|f(x)-F(x)\| \leq \begin{cases}\frac{K \theta\|x\|^{p}}{3 \cdot 2^{p}}\left(\frac{4}{2^{p}-16}-\frac{1}{2^{p}-4}\right) & \text { if } p>4 \tag{11}\\ \frac{K\|x\|^{p}}{12}\left(\frac{1}{16-2^{p}}+\frac{1}{2^{p}-4}\right) & \text { if } 2<p<4 \\ \frac{K \theta\|x\|^{p}}{12}\left(\frac{1}{16-2^{p}}+\frac{1}{4-2^{p}}\right) & \text { if }\end{cases}
$$

for all $x \in X$, where

$$
\begin{aligned}
K= & \frac{69 k^{2}+42+\left(12 k^{2}+8\right) 2^{p}+k^{2} 3^{p}+\frac{k^{2}}{2} 4^{p}}{\left|k^{4}-k^{2}\right|} \\
& +\frac{10|k|^{p}+4|k-1|^{p}+4|k+1|^{p}+|k-2|^{p}+|k+2|^{p}}{\left|k^{4}-k^{2}\right|}
\end{aligned}
$$

Proof. From (7) and (10), we have

$$
\begin{aligned}
\|\Delta f(x)\|= & \| \frac{1}{k^{4}-k^{2}}\left(-E_{1, k} f_{e}(x,(k+2) x)-E_{k} f_{e}(x,(k-2) x)\right. \\
& -4 E_{k} f_{e}(x,(k+1) x)-4 E_{k} f_{e}(x,(k-1) x)+10 E_{k} f_{e}(x, k x) \\
& +E_{k} f_{e}(2 x, 2 x)+4 E_{k} f_{e}(2 x, x)-2\left(k^{2}+1\right) E_{k} f_{e}(x, 2 x) \\
& \left.-k^{2} E_{k} f_{e}(x, 3 x)+\left(17 k^{2}-8\right) E_{k} f_{e}(x, x)\right)-\frac{\left(28 k^{2}-10\right) E_{k} f(0,0)}{2 k^{2}\left(k^{2}-1\right)} \\
& +\frac{E_{k} f(0,4 x)-20 E_{k} f(0,2 x)+64 E_{k} f(0, x)}{2\left(k^{2}-1\right)} \| \\
\leq & K\|x\|^{p}
\end{aligned}
$$

for all $x \in X$. It follows from (9) and (10) that

$$
\left\|J_{n} f(x)-J_{n+1} f(x)\right\| \leq \begin{cases}\frac{4^{n}\left(4^{n+1}-1\right)}{3 \cdot 2^{(n+2) p}} K \theta\|x\|^{p} & \text { if } p>4 \\ \left(\frac{2^{n p}}{12 \cdot 16^{n+1}}+\frac{4^{n-1}}{3 \cdot 2^{(n+1) p}}\right) K \theta\|x\|^{p} & \text { if } 2<p<4 \\ \frac{\left(4^{n+1}-12^{n}\right.}{3 \cdot 4^{2 n+1}} K \theta\|x\|^{p} & \text { if } 0<p<2\end{cases}
$$

for all $x \in X$. Since the equality $J_{n} f(x)-J_{n+m} f(x)=\sum_{i=n}^{n+m-1}\left(J_{i} f(x)-\right.$ $\left.J_{i+1} f(x)\right)$ holds for all $x \in X$, we get $\left\|J_{n} f(x)-J_{n+m} f(x)\right\| \leq$

$$
\left\{\begin{array}{lr}
\sum_{i=n}^{n+m-1} \frac{4^{i}\left(4^{i+1}-1\right)}{3 \cdot 2^{(i+2) p}} K \theta\|x\|^{p} & \text { if } p>4 \tag{12}\\
\sum_{i=n}^{n+m-1}\left(\frac{2^{i p}}{12 \cdot 16^{i+1}}+\frac{4^{i-1}}{3 \cdot 2^{(i+1) p}}\right) K \theta\|x\|^{p} & \text { if } 2<p<4, \\
\sum_{i=n}^{n+m-1} \frac{\left(4^{i+1}-1\right)^{i p}}{3 \cdot 4^{2 i+1}} K \theta\|x\|^{p} & \text { if } 0<p<2
\end{array}\right.
$$

for all $x \in X$ and $n, m \in \mathbb{N} \cup\{0\}$. It follows from (12) that the sequence $\left\{J_{n} f(x)\right\}$ is a Cauchy sequence for all $x \in X$. Since Y is complete, the sequence
$\left\{J_{n} f(x)\right\}$ converges for all $x \in X$. Hence we can define a mapping $F: X \rightarrow Y$ by

$$
F(x):=\lim _{n \rightarrow \infty} J_{n} f(x)
$$

for all $x \in X$. Moreover, letting $n=0$ and passing the limit $n \rightarrow \infty$ in (12) we get the inequality (11). For the case $2<p<4$, from the definition of F, we easily get

$$
\begin{aligned}
&\left\|E_{k} F(x, y)\right\|= \lim _{n \rightarrow \infty} \| \frac{4^{n}}{12}\left(-E_{k} f\left(\frac{2 x}{2^{n}}, \frac{2 y}{2^{n}}\right)+16 E_{k} f\left(\frac{x}{2^{n}}, \frac{y}{2^{n}}\right)\right) \\
&+\frac{E_{k} f\left(2^{n+1} x, 2^{n+1} y\right)-4 E_{k} f\left(2^{n} x, 2^{n} y\right)}{12 \cdot 16^{n}} \| \\
& \leq \lim _{n \rightarrow \infty}\left(\frac{4^{n}\left(2^{p}+16\right)}{12 \cdot 2^{n p}}+\frac{2^{n p}\left(2^{p}+4\right)}{12 \cdot 16^{n}}\right) \theta\left(\|x\|^{p}+\|y\|^{p}\right) \\
&=0
\end{aligned}
$$

for all $x, y \in X$. Also we easily show that $E_{k} F(x, y)=0$ by the similar method for the other cases, either $0<p<2$ or $4<p$. To prove the uniqueness of F, let $F^{\prime}: X \rightarrow Y$ be another solution mapping satisfying (11). Instead of the condition (11), it is sufficient to show that there is a unique mapping that satisfies condition $\|f(x)-F(x)\| \leq \frac{K \theta\|x\|^{p}}{12}\left(\frac{1}{\left|16-2^{p}\right|}+\frac{1}{\left|4-2^{p}\right|}\right)$ simply. By Lemma 3.3, the equality $F^{\prime}(x)=J_{n} F^{\prime}(x)$ holds for all $n \in \mathbb{N}$. For the case $p>4$, we have

$$
\begin{aligned}
& \left\|J_{n} f(x)-F^{\prime}(x)\right\| \\
& \quad=\left\|J_{n} f(x)-J_{n} F^{\prime}(x)\right\| \\
& \quad \leq \frac{4^{2 n+1}-4^{n}}{3}\left\|\left(f-F^{\prime}\right)\left(2^{-n} x\right)\right\|+\frac{4^{2 n+2}-4^{n+2}}{3}\left\|\left(f-F^{\prime}\right)\left(2^{-n-1} x\right)\right\| \\
& \quad \leq\left(\frac{4^{2 n+1}-4^{n}}{3 \cdot 2^{n p}}+\frac{4^{2 n+2}-4^{n+2}}{3 \cdot 2^{(n+1) p}}\right) \frac{K \theta\|x\|^{p}}{12}\left(\frac{1}{\left|16-2^{p}\right|}+\frac{1}{\left|4-2^{p}\right|}\right) \\
& \quad \leq \frac{4^{2 n+2}}{3 \cdot 2^{n p}} \frac{K \theta\|x\|^{p}}{12}\left(\frac{1}{\mid 16-2^{p \mid}}+\frac{1}{\left|4-2^{p}\right|}\right)
\end{aligned}
$$

for all $x \in X$ and all positive integer n. Taking the limit in the above inequality as $n \rightarrow \infty$, we can conclude that $F^{\prime}(x)=\lim _{n \rightarrow \infty} J_{n} f(x)$ for all $x \in X$. For the other cases, either $0<p<2$ or $2<p<4$, we also easily show that $F^{\prime}(x)=\lim _{n \rightarrow \infty} J_{n} f(x)$ by the similar method. This means that $F(x)=F^{\prime}(x)$ for all $x \in X$.

4. Stability of a cubic-quartic functional equation

Now we will show that the functional equation $H_{r} f(x, y)=0$ is a cubicquartic functional equation when r is a rational number such that $r \notin\{0,1,-1\}$.

Theorem 4.1. Let r be a rational number such that $r \notin\{0,1,-1\}$. A mapping $f: V \rightarrow W$ satisfies the functional equation $H_{r} f(x, y)=0$ for all $x, y \in V$ if and only if f_{o} is a cubic mapping and f_{e} is a quartic mapping.

Proof. Assume that a mapping $f: V \rightarrow W$ satisfies the functional equation $H_{r} f(x, y)=0$ for all $x, y \in V$. The equalities $f(0)=0, f_{o}(r x)=r^{3} f_{o}(x)$ and $f_{e}(r x)=r^{4} f_{e}(x)$ follow from the equalities

$$
\begin{aligned}
f(0) & =\frac{-H_{r} f(0,0)}{2 r^{2}\left(r^{2}-1\right)}, \\
f_{o}(r x)-r^{3} f_{o}(x) & =\frac{H_{r} f(x, 0)-H_{r} f(-x, 0)}{4}, \\
f_{e}(r x)-r^{4} f_{e}(x) & =\frac{H_{r} f(x, 0)+H_{r} f(-x, 0)}{4}
\end{aligned}
$$

for all $x \in V$. The mappings f_{o} and f_{e} are generalized polynomial mappings of degree at most 4 by Corollary 1.2 , so f_{o} is a cubic mapping and f_{e} is a quartic mapping by Remark 1.

Conversely, assume that f_{o} is a cubic mapping and f_{e} is a quartic mapping, i.e., f is a cubic-quartic mapping. Notice that the equalities $f_{o}(r x)=r^{3} f_{o}(x)$, $f_{o}(x)=-f_{o}(-x), f_{e}(r x)=r^{4} f_{e}(x), f_{e}(x)=f_{e}(-x)$, and $f(x)=f_{o}(x)+f_{e}(x)$ for all $x \in V$ and $r \in \mathbb{Q}$. Also we know that

$$
\begin{aligned}
H_{r} f(x, y)= & H_{r} f_{e}(x, y)+H_{r} f_{o}(x, y) \\
H_{r} f_{o}(x, y)= & f_{o}(r x+y)+f_{o}(r x-y)-r f_{o}(x+y)-r f_{o}(x-y)-2\left(r^{3}-r\right) f_{o}(x) \\
H_{r} f_{e}(x, y)= & f_{e}(r x+y)+f_{e}(r x-y)-r^{2} f_{e}(x+y) \\
& -r^{2} f_{e}(x-y)-2\left(r^{4}-r^{2}\right) f_{e}(x)+2\left(r^{2}-1\right) f_{e}(y)
\end{aligned}
$$

for all $x, y \in V$.
Let us first prove $H_{n} f(x, y)=0$ if n is a natural number. Using mathematical induction, the equalities $H_{n} f_{o}(x, y)=0$ and $H_{n} f_{e}(x, y)=0$ follow from the equalities

$$
\begin{aligned}
H_{2} f_{o}(x, y)= & C f_{o}(y, x)+C f_{o}(-y, x) \\
H_{3} f_{o}(x, y)= & C f_{o}(y-x, 2 x) \\
H_{n} f_{o}(x, y)= & H_{n-1} f_{o}(x, x+y)+H_{n-1} f_{o}(x, x-y)-H_{n-2} f_{o}(x, y) \\
& +(n-1) H_{2} f_{o}(x, y), \\
H_{2} f_{e}(x, y)= & Q f_{e}(y, x) \\
H_{3} f_{e}(x, y)= & H_{2} f_{e}(x, x+y)+H_{2} f_{e}(x, x-y)+4 H_{2} f_{e}(x, y), \\
H_{n} f_{e}(x, y)= & H_{n-1} f_{e}(x, x+y)+H_{n-1} f_{e}(x, x-y)-H_{n-2} f_{e}(x, y) \\
& +(n-1)^{2} H_{2} f_{e}(x, y)
\end{aligned}
$$

for all $x, y \in V$ and all $n \in \mathbb{N}$. Let us now prove $H_{r} f(x, y)=0$ if r is a rational number such that $r \notin\{0,1,-1\}$. Notice that if $r \in \mathbb{Q}$, then there exist
$m, n \in \mathbb{N}$ such that $r=\frac{n}{m}$ or $r=\frac{-n}{m}$. Since the equalities $H_{\frac{n}{m}} f(x, y)=0$ and $H_{-n}^{m} f(x, y)=0$ follow from the equalities

$$
\begin{aligned}
H_{\frac{n}{m}}^{m} f_{o}(x, y) & =H_{n} f_{o}\left(\frac{x}{m}, y\right)-\frac{n}{m} H_{m} f_{o}\left(\frac{x}{m}, y\right), \\
H_{\frac{n}{m}} f_{e}(x, y) & =H_{n} f_{e}\left(\frac{x}{m}, y\right)-\frac{n^{2}}{m^{2}} H_{m} f_{e}\left(\frac{x}{m}, y\right), \\
H_{\frac{-n}{m}} f_{o}(x, y) & =-H_{\frac{n}{m}} f_{o}(x, y) \\
H_{\frac{-n}{m}} f_{e}(x, y) & =H_{\frac{n}{m}} f_{e}(x, y)
\end{aligned}
$$

for all $x, y \in V$ and $n, m \in \mathbb{N}$, we get $H_{r} f(x, y)=0$ for all $x, y \in V$.

For a given mapping $f: X \rightarrow Y$ and a fixed positive real number $p \notin\{3,4\}$, let $J_{n} f: X \rightarrow Y$ be the mappings defined by $J_{n} f(x)=$

$$
\left\{\begin{array}{l}
\frac{1}{2} k^{3 n}\left(f\left(k^{-n} x\right)-f\left(-k^{-n} x\right)\right)+\frac{1}{2} k^{4 n}\left(f\left(k^{-n} x\right)+f\left(-k^{-n} x\right)\right) \quad \text { if } p>4 \\
\frac{1}{2} k^{3 n}\left(f\left(k^{-n} x\right)-f\left(-k^{-n} x\right)\right)+\frac{1}{2} k^{-4 n}\left(f\left(k^{n} x\right)+f\left(-k^{n} x\right)\right) \quad \text { if } 3<p<4 \\
\frac{1}{2} k^{-3 n}\left(f\left(k^{n} x\right)-f\left(k^{-n} x\right)\right)+\frac{1}{2} k^{-4 n}\left(f\left(k^{n} x\right)+f\left(-k^{n} x\right)\right) \quad \text { if } 0<p<3
\end{array}\right.
$$

for all $x \in X$ and all nonnegative integers n when $|k|>1$ and $J_{n} f(x)=$

$$
\left\{\begin{array}{lr}
\frac{1}{2} k^{3 n}\left(f\left(k^{-n} x\right)-f\left(-k^{-n} x\right)\right)+\frac{1}{2} k^{4 n}\left(f\left(k^{-n} x\right)+f\left(-k^{-n} x\right)\right) & \text { if } 0<p<3, \\
\frac{1}{2} k^{-3 n}\left(f\left(k^{n} x\right)-f\left(-k^{n} x\right)\right)+\frac{1}{2} k^{4 n}\left(f\left(k^{-n} x\right)+f\left(-k^{-n} x\right)\right) & \text { if } 3<p<4, \\
\frac{1}{2} k^{-3 n}\left(f\left(k^{n} x\right)-f\left(k^{-n} x\right)\right)+\frac{1}{2} k^{-4 n}\left(f\left(k^{n} x\right)+f\left(-k^{n} x\right)\right) & \text { if } p>4
\end{array}\right.
$$

for all $x \in X$ and all nonnegative integers n when $|k|<1$. From the definition of $J_{n} f$, if $f(0)=0$, the equality
$J_{n} f(x)-J_{n+1} f(x)=$
(13)

$$
\begin{cases}\frac{k^{4 n}+k^{3 n}}{4} H_{k} f\left(k^{-n-1} x, 0\right)+\frac{k^{4 n}-k^{3 n}}{4} H_{k} f\left(-k^{-n-1} x, 0\right) & \text { if } p>4 \\ \frac{k^{3 n}}{4} H_{k} f\left(k^{-n-1} x, 0\right)-\frac{k^{3 n}}{4} H_{k} f\left(-k^{-n-1} x, 0\right) \\ -\frac{1}{4 k^{4 n+4}} H_{k} f\left(k^{n} x, 0\right)-\frac{1}{4 k^{4 n+4}} H_{k} f\left(-k^{n} x, 0\right) & \text { if } 3<p<4 \\ -\frac{1+k^{n+1}}{4 k^{n n+4}} H_{k} f\left(k^{n} x, 0\right)-\frac{1-k^{n+1}}{4 k^{4 n+4}} H_{k} f\left(-k^{n} x, 0\right) & \text { if } 0<p<3\end{cases}
$$

holds for all $x \in X$ and all nonnegative integers n when $|k|>1$ and $J_{n} f(x)-J_{n+1} f(x)=$
(14 $\left\{\begin{array}{lr}\frac{k^{4 n}+k^{3 n}}{4} H_{k} f\left(k^{-n-1} x, 0\right)+\frac{k^{4 n}-k^{3 n}}{4} H_{k} f\left(-k^{-n-1} x, 0\right) & \text { if } 0<p<3, \\ \frac{k^{4 n}}{4} H_{k} f\left(k^{-n-1} x, 0\right)+\frac{k^{4 n}}{4} H_{k} f\left(-k^{-n-1} x, 0\right) & \\ -\frac{1}{4 k^{3 n+3}} H_{k} f\left(k^{n} x, 0\right)+\frac{1}{4 k^{3 n+3}} H_{k} f\left(-k^{n} x, 0\right) & \text { if } 3<p<4, \\ -\frac{1+k^{n+1}}{4 k^{4 n+4}} H_{k} f\left(k^{n} x, 0\right)-\frac{1-k^{n+1}}{4 k^{4 n+4}} H_{k} f\left(-k^{n} x, 0\right) & \text { if } p>4\end{array}\right.$
holds for all $x \in X$ and all nonnegative integers n when $|k|<1$. From the above equality and the equality $f(x)-J_{n} f(x)=\sum_{i=0}^{n-1}\left(J_{i} f(x)-J_{i+1} f(x)\right)$ for all $x \in X$, we obtain the following lemma.

Lemma 4.2. If $f: X \rightarrow Y$ is a mapping such that

$$
H_{k} f(x, y)=0
$$

for all $x, y \in X$, then

$$
J_{n} f(x)=f(x)
$$

for all $x \in X$ and all positive integers n.

From Theorem 4.1-Lemma 4.2, we can prove the following stability theorem, where k is a real number with $k \notin\{0,1,-1\}$.

Theorem 4.3. Let $p \notin\{3,4\}$ be a fixed positive real number. Suppose that $f: X \rightarrow Y$ is a mapping such that

$$
\begin{equation*}
\left\|H_{k} f(x, y)\right\| \leq \theta\left(\|x\|^{p}+\|y\|^{p}\right) \tag{15}
\end{equation*}
$$

for all $x, y \in X$ (and $f(0)=0$ when $p=0$). Then there exists a unique solution mapping F of the functional equation $H_{k} F(x, y)=0$ such that

$$
\|f(x)-F(x)\| \leq \begin{cases}\frac{\theta\|x\|^{p}}{2 \|\left. k\right|^{4}-|k|^{p} \mid} & \text { if } p>4 \tag{16}\\ \left(\frac{1}{\left.2| | k\right|^{3}-|k|^{p} \mid}+\frac{1}{\left.2| | k\right|^{4}-|k|^{p} \mid}\right) \theta\|x\|^{p} & \text { if } 3<p<4 \\ \frac{\theta\|x\|^{p}}{2 \|\left. k\right|^{3}-|k|^{p} \mid} & \text { if } 0<p<3\end{cases}
$$

for all $x \in X$.

Proof. Note that $f(0)=0$ follows from $\left\|2\left(k^{4}-k^{2}\right) f(0)\right\|=\left\|H_{k} f(0,0)\right\| \leq 0$. The proof of this theorem will be divided into two cases, either $|k|>1$ or $|k|<1$.

Case 1. Let $|k|>1$. It follows from (13) and (15) that

$$
\left\|J_{n} f(x)-J_{n+1} f(x)\right\| \leq \begin{cases}\frac{|k|^{4 n} \theta\|x\|^{p}}{\left.2| |\right|^{n+1} p} & \text { if } p>4 \\ \frac{|k|^{n p} \theta\|x\|^{p}}{2|k|^{4(n+1)}}+\frac{|k|^{3 n} \theta\|x\|^{p}}{2|k|(n+1)^{p}} & \text { if } 3<p<4 \\ \frac{|k|^{n} \theta \|\left. x\right|^{p}}{2|k|^{3 n+3}} & \text { if } 0<p<3\end{cases}
$$

for all $x \in X$. Together with the equality $J_{n} f(x)-J_{n+m} f(x)=\sum_{i=n}^{n+m-1}\left(J_{i} f(x)-\right.$ $\left.J_{i+1} f(x)\right)$ for all $x \in X$, we get

$$
\left\|J_{n} f(x)-J_{n+m} f(x)\right\| \leq \begin{cases}\sum_{i=n}^{n+m-1} \frac{|k|^{4 i} \theta\|x\|^{p}}{2|k|^{(i+1) p}} & \text { if } p>4, \tag{17}\\ \sum_{i=n}^{n+m-1}\left(\frac{|k|^{i p} \theta \|\left. x\right|^{p}}{2|k|^{4(i+1)}}+\frac{|k|^{3 i} \theta\|x\|^{p}}{2|k|^{(i+1) p}}\right) & \text { if } 3<p<4, \\ \sum_{i=n}^{n+m-1} \frac{|k|^{i p} \theta\|x\|^{p}}{2|k|^{3 i+3}} & \text { if } 0<p<3\end{cases}
$$

for all $x \in X$. It follows from (17) that the sequence $\left\{J_{n} f(x)\right\}$ is a Cauchy sequence for all $x \in X$. Since Y is complete, the sequence $\left\{J_{n} f(x)\right\}$ converges for all $x \in X$. Hence we can define a mapping $F: X \rightarrow Y$ by

$$
F(x):=\lim _{n \rightarrow \infty} J_{n} f(x)
$$

for all $x \in X$. Moreover, letting $n=0$ and passing the limit $n \rightarrow \infty$ in (17) we get the inequality (16). For the case $3<p<4$, from the definition of F, we easily get

$$
\begin{aligned}
&\left\|H_{k} F(x, y)\right\|= \lim _{n \rightarrow \infty} \| \frac{k^{3 n}}{2}\left(H_{k} f\left(\frac{x}{k^{n}}, \frac{y}{k^{n}}\right)-H_{k} f\left(-\frac{x}{k^{n}},-\frac{y}{k^{n}}\right)\right) \\
&+\frac{H_{k} f\left(k^{n} x, k^{n} y\right)+H_{k} f\left(-k^{n} x,-k^{n} y\right)}{2 k^{4 n}} \| \\
& \leq \lim _{n \rightarrow \infty}\left(\frac{|k|^{3 n}}{|k|^{n p}}+\frac{|k|^{n p}}{|k|^{4 n}}\right) \theta\left(\|x\|^{p}+\|y\|^{p}\right) \\
&=0
\end{aligned}
$$

for all $x, y \in X$. For the other cases, we also easily show that $H_{k} F(x, y)=0$ by the similar method. Now let $F^{\prime}: X \rightarrow Y$ be another solution mapping satisfying (16). Instead of condition (16), it is sufficient to show that there is a unique mapping that satisfies condition $\|f(x)-F(x)\| \leq\left(\frac{1}{2|k|^{3}-|k|^{p} \mid}+\frac{1}{\left.2| | k\right|^{4}-|k|^{p} \mid}\right) \theta\|x\|^{p}$ simply. By Lemma 4.2 , the equality $F^{\prime}(x)=J_{n} F^{\prime}(x)$ holds for all $n \in \mathbb{N}$. For
the case $p>4$, we have

$$
\begin{aligned}
\left\|J_{n} f(x)-F^{\prime}(x)\right\|= & \left\|J_{n} f(x)-J_{n} F^{\prime}(x)\right\| \\
\leq & \frac{k^{3 n}}{2}\left(\left\|\left(f-F^{\prime}\right)\left(k^{-n} x\right)\right\|+\left\|\left(f-F^{\prime}\right)\left(-k^{-n} x\right)\right\|\right) \\
& +\frac{1}{2 k^{4 n}}\left(\left\|\left(f-F^{\prime}\right)\left(k^{n} x\right)\right\|+\left\|\left(f-F^{\prime}\right)\left(-k^{n} x\right)\right\|\right) \\
\leq & \left(\frac{|k|^{3 n}}{|k|^{n p}}+\frac{|k|^{n p}}{|k|^{4 n}}\right)\left(\frac{1}{2 \|\left. k\right|^{3}-|k|^{p \mid}}+\frac{1}{\left.2| | k\right|^{4}-|k|^{p} \mid}\right) \theta\|x\|^{p}
\end{aligned}
$$

for all $x \in X$ and all positive integers n. Taking the limit in the above inequality as $n \rightarrow \infty$, we can conclude that $F^{\prime}(x)=\lim _{n \rightarrow \infty} J_{n} f(x)$ for all $x \in X$. For the other cases, we also easily show that $F^{\prime}(x)=\lim _{n \rightarrow \infty} J_{n} f(x)$ by the similar method. This means that $F(x)=F^{\prime}(x)$ for all $x \in X$.
Case 2. Let $|k|<1$. It follows from (14) and (15) that

$$
\left\|J_{n} f(x)-J_{n+1} f(x)\right\| \leq \begin{cases}\frac{|k|^{3 n} \theta \|\left. x\right|^{p}}{\left.2| |\right|^{n+1) p}} & \text { if } 0<p<3 \\ \frac{\left.|k|^{4 n} \theta\|x\|\right|^{p}}{\left.2|k|\right|^{(n+1) p}}+\frac{|k|^{n p} \theta\|x\|^{p}}{\left.2|k|\right|^{3(n+1)}} & \text { if } 3<p<4 \\ \frac{|k|^{n+} \theta \|\left. x\right|^{p}}{2|k|^{4 n+4}} & \text { if } p>4\end{cases}
$$

for all $x \in X$. Together with the equality $J_{n} f(x)-J_{n+m} f(x)=\sum_{i=n}^{n+m-1}\left(J_{i} f(x)-\right.$ $\left.J_{i+1} f(x)\right)$ for all $x \in X$, we get

$$
\left\|J_{n} f(x)-J_{n+m} f(x)\right\| \leq \begin{cases}\sum_{i n}^{n+m-1} \frac{|k|^{i p} \theta\|x\|^{p}}{2|k| \|^{4(i+1)}} & \text { if } p>4 \tag{18}\\ \sum_{i=n}^{n+m-1} \frac{\left.|k|\right|^{i i} \theta\|x\|^{p}}{\left.2|k|\right|^{(i+1) p}}+\frac{|k|^{i p} \theta\|x\|^{p}}{2|k|^{3(i+1)}} & \text { if } 3<p<4 \\ \sum_{i=n}^{n+m-1} \frac{|k|^{3 i} \theta\|x\|^{p}}{2|k|^{(i+1) p}} & \text { if } 0<p<3\end{cases}
$$

for all $x \in X$. It follows from (18) that the sequence $\left\{J_{n} f(x)\right\}$ is a Cauchy sequence for any $x \in X$. Since Y is complete, the sequence $\left\{J_{n} f(x)\right\}$ converges for any $x \in X$. Hence we can define a mapping $F: X \rightarrow Y$ by

$$
F(x):=\lim _{n \rightarrow \infty} J_{n} f(x)
$$

for all $x \in X$. Moreover, letting $n=0$ and passing the limit $n \rightarrow \infty$ in (18), we get (16). For the case $p<3$, from the definition of F, we easily get

$$
\begin{aligned}
\left\|H_{k} F(x, y)\right\|= & \lim _{n \rightarrow \infty} \| \frac{k^{3 n}}{2}\left(H_{k} f\left(\frac{x}{k^{n}}, \frac{y}{k^{n}}\right)-H_{k} f\left(-\frac{x}{k^{n}},-\frac{y}{k^{n}}\right)\right) \\
& +\frac{k^{4 n}}{2}\left(H_{k} f\left(\frac{x}{k^{n}}, \frac{y}{k^{n}}\right)+H_{k} f\left(-\frac{x}{k^{n}},-\frac{y}{k^{n}}\right)\right) \| \\
\leq & \lim _{n \rightarrow \infty}\left(|k|^{3 n}+|k|^{4 n}\right) \frac{\theta\left(\|x\|^{p}+\|y\|^{p}\right)}{|k|^{n p}} \\
= & 0
\end{aligned}
$$

for all $x, y \in X$. For the other cases, we also easily show that $H_{k} F(x, y)=0$ by the similar method. Now let $F^{\prime}: X \rightarrow Y$ be another solution mapping satisfying (16). By Lemma 4.2, the equality $F^{\prime}(x)=J_{n} F^{\prime}(x)$ holds for all $n \in \mathbb{N}$. For the case $0<p<3$, we have

$$
\begin{aligned}
\left\|J_{n} f(x)-F^{\prime}(x)\right\|= & \left\|J_{n} f(x)-J_{n} F^{\prime}(x)\right\| \\
\leq & \frac{k^{3 n}}{2}\left(\left\|\left(f-F^{\prime}\right)\left(k^{-n} x\right)\right\|+\left\|\left(f-F^{\prime}\right)\left(-k^{-n} x\right)\right\|\right) \\
& +\frac{k^{4 n}}{2}\left(\left\|\left(f-F^{\prime}\right)\left(k^{-n} x\right)\right\|+\left\|\left(f-F^{\prime}\right)\left(-k^{-n} x\right)\right\|\right) \\
\leq & \frac{|k|^{3 n}+|k|^{4 n}}{|k|^{n p}}\left(\frac{1}{2 \|\left. k\right|^{3}-|k|^{p} \mid}+\frac{1}{\left.2| | k\right|^{4}-|k|^{p \mid} \mid}\right) \theta\|x\|^{p}
\end{aligned}
$$

for all $x \in X$ and all positive integer n. Taking the limit in the above inequality as $n \rightarrow \infty$, we can conclude that $F^{\prime}(x)=\lim _{n \rightarrow \infty} J_{n} f(x)$ for all $x \in X$. For the other cases, we also easily show that $F^{\prime}(x)=\lim _{n \rightarrow \infty} J_{n} f(x)$ by the similar method. This means that $F(x)=F^{\prime}(x)$ for all $x \in X$.

References

[1] S. Abbaszadeh, Intutionistic fuzzy stability of a quadratic and quartic functional equation, Int. J. Nonlinear Anal. Appl. 1 (2010), 100-124.
[2] J. Baker, A general functional equation and its stability, Proc. Natl. Acad. Sci. 133(6) (2005), 1657-1664.
[3] A. Bodaghi, Stability of a mixed type additive and quartic functional equation, Filomat, 28(8) (2014) 1629-1640.
[4] A. Bodaghi, Approximate mixed type additive and quartic functional equation, Bol. Soc. Paran. Mat. 35(1) (2017), 43-56.
[5] P. Găvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), 431-436.
[6] M. E. Gordji, Stability of a functional equation deriving from quartic and additive functions, arXiv preprint arXiv:0812.5025 (2008).
[7] M. E. Gordji, S. Abbaszadeh, and C. Park, On the stability of a generalized quadratic and quartic type functional equation in quasi-Banach spaces, J. Inequal. Appl. 2009 Article ID 153084.
[8] M. E. Gordji, A. Ebadian, and S. Zolfaghari, Stability of a functional equation deriving from cubic and quartic functions, Abstr. Appl. Anal. 2008 Article ID 801904.
[9] M. E. Gordji, M. B. Savadkouhi, Stability of a mixed type cubic-quartic functional equation in non-archimedean spaces, Appl. Math. Lett. 23 (2010), 1198-1202.
[10] M. E. Gordji, M. B. Savadkouhi, and C. Park, Quadratic-quartic functional equations in $R N$-spaces, J. Inequal. Appl. 2009 Article ID 868423.
[11] D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. U.S.A. 27 (1941), 222-224.
[12] S.-Y. Jang, C.-K. Park, and D. Y. Shin, Fuzzy stability of a cubic-quartic functional equation: A fixed point approach, Bull. Korean Math. Soc. 48 (2011), 491-503.
[13] H.-M. Kim, On the stability problem for a mixed type of quartic and quadratic functional equation, J. Math. Anal. Appl. 324 (2006), 358-372.
[14] J.-R. Lee, C.-K. Park, Y.-J. Cho and D.-Y. Shin, Orthogonal stability of a cubic-quartic functional equation in non-archimedean spaces, J. Comput. Anal. Appl. 15 (2013), 572583.
[15] C.-K. Park, Orthogonal stability of a cubic-quartic functional equation, Journal of Nonlinear Sciences \& Applications (JNSA) 5 (2012), 28-36.
[16] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300.
[17] S. M. Ulam, A Collection of Mathematical Problems, Interscience, New York, 1960.
[18] Z. Wang and P. K. Sahoo, Stability of the generalized quadratic and quartic type functional equation in non-archimedean fuzzy normed spaces, J. Appl. Anal. Comput. 6 (2016), 917-938.
[19] T. Z. Xu, J. M. Rassias, and W. X. Xu, A generalized mixed quadratic-quartic functional equation, Bull. Malays. Math. Sci. Soc. 35(3) (2012), 633-649.
[20] X. Zhao, X. Yang, and C. T. Pang, Solution and stability of a general mixed type cubic and quartic functional equation, J. Funct. Spaces Appl. 2013 Article ID 673810.

Sun-Sook Jin
Department of Mathematics Education, Gongju National University of Education, Gonguu 32553, Republic of Korea

E-mail address: ssjin@ gjue.ac.kr
Yang-Hi Lee
Department of Mathematics Education, Gonguu National University of Education, Gongju 32553, Republic of Korea

E-mail address: yanghi2@hanmail.net

[^0]: Received Novermber 7, 2019; Accepted January 2, 2020.
 2010 Mathematics Subject Classification. 39B82, 39B52.
 Key words and phrases. stability of a functional equation; additive-quartic functional equation; quadratic-quartic functional equation; cubic-quartic functional equation; additivequartic mappings; quadratic-quartic mappings; cubic-quartic mappings.

 * Corresponding author.

