• Title/Summary/Keyword: q-binomial coefficient

Search Result 7, Processing Time 0.021 seconds

SOME SUMS VIA EULER'S TRANSFORM

  • Nese Omur;Sibel Koparal;Laid Elkhiri
    • Honam Mathematical Journal
    • /
    • v.46 no.3
    • /
    • pp.365-377
    • /
    • 2024
  • In this paper, we give some sums involving the generalized harmonic numbers Hrn (σ) and the (q, r)-binomial coefficient $\left({L \atop k}\right)_{q,r}$ by using Euler's transform. For example, for (c, r) ∈ ℤ+ × ℝ+, $${\sum_{n=0}^{\infty}}{\sum_{k=0}^{n}}\,(-1)^k\,\left({n+r \atop n-k}\right)\frac{c^{n+1}H^{r-1}_k({\sigma})}{(n+1)(1+c)^{n+1}}=-(c+{\frac{1}{{\sigma}}})\,{\ln}\,(1+c{\sigma})+c,$$ and $${\sum_{k=0}^{n}}\left({n \atop k}\right)\left({L \atop k}\right)_{2,r}={\sum_{j=0}^{n}}{\sum_{k=0}^{j}}(-1)^k\left({j-k+2L+r \atop j-k}\right)\left({r \atop n-j}\right)\left({L \atop k}\right)_2,$$ where σ is appropriate parameter, Hrn (σ) is the generalized hyperharmonic number of order r and $\left({L \atop k}\right)_q$ is the q-binomial coefficient.

IDENTITIES INVOLVING q-ANALOGUE OF MODIFIED TANGENT POLYNOMIALS

  • JUNG, N.S.;RYOO, C.S.
    • Journal of applied mathematics & informatics
    • /
    • v.39 no.5_6
    • /
    • pp.643-654
    • /
    • 2021
  • In this paper, we define a modified q-poly-Bernoulli polynomials of the first type and modified q-poly-tangent polynomials of the first type by using q-polylogarithm function. We derive some identities of the modified polynomials with Gaussian binomial coefficients. We also explore several relations that are connected with the q-analogue of Stirling numbers of the second kind.

ON FULLY MODIFIED q-POLY-EULER NUMBERS AND POLYNOMIALS

  • C.S. RYOO
    • Journal of Applied and Pure Mathematics
    • /
    • v.6 no.1_2
    • /
    • pp.1-11
    • /
    • 2024
  • In this paper, we define a new fully modified q-poly-Euler numbers and polynomials of the first type by using q-polylogarithm function. We derive some identities of the modified polynomials with Gaussian binomial coefficients. We also explore several relations that are connected with the q-analogue of Stirling numbers of the second kind.

ON EULERIAN q-INTEGRALS FOR SINGLE AND MULTIPLE q-HYPERGEOMETRIC SERIES

  • Ernst, Thomas
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.1
    • /
    • pp.179-196
    • /
    • 2018
  • In this paper we extend the two q-additions with powers in the umbrae, define a q-multinomial-coefficient, which implies a vector version of the q-binomial theorem, and an arbitrary complex power of a JHC power series is shown to be equivalent to a special case of the first q-Lauricella function. We then present several q-analogues of hypergeometric integral formulas from the two books by Exton and the paper by Choi and Rathie. We also find multiple q-analogues of hypergeometric integral formulas from the recent paper by Kim. Finally, we prove several multiple q-hypergeometric integral formulas emanating from a paper by Koschmieder, which are special cases of more general formulas by Exton.

FIXED-WIDTH PARTITIONS ACCORDING TO THE PARITY OF THE EVEN PARTS

  • John M. Campbell
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.4
    • /
    • pp.1017-1024
    • /
    • 2023
  • A celebrated result in the study of integer partitions is the identity due to Lehmer whereby the number of partitions of n with an even number of even parts minus the number of partitions of n with an odd number of even parts equals the number of partitions of n into distinct odd parts. Inspired by Lehmer's identity, we prove explicit formulas for evaluating generating functions for sequences that enumerate integer partitions of fixed width with an even/odd number of even parts. We introduce a technique for decomposing the even entries of a partition in such a way so as to evaluate, using a finite sum over q-binomial coefficients, the generating function for the sequence of partitions with an even number of even parts of fixed, odd width, and similarly for the other families of fixed-width partitions that we introduce.

COMBINATORIAL PROOF FOR THE POSITIVITY OF THE ORBIT POLYNOMIAL $O^{n,3}_d(q)$

  • Lee, Jae-Jin
    • Journal of applied mathematics & informatics
    • /
    • v.30 no.3_4
    • /
    • pp.455-462
    • /
    • 2012
  • The cyclic group $Cn={\langle}(12{\cdots}n){\rangle}$ acts on the set ($^{[n]}_k$) of all $k$-subsets of [$n$]. In this action of $C_n$ the number of orbits of size $d$, for $d|n$, is $$O^{n,k}_d=\frac{1}{d}\sum_{\frac{n}{d}|s|n}{\mu}(\frac{ds}{n})(^{n/s}_{k/s})$$. Stanton and White[7] generalized the above identity to construct the orbit polynomials $$O^{n,k}_d(q)=\frac{1}{[d]_{q^{n/d}}}\sum_{\frac{n}{d}|s|n}{\mu}(\frac{ds}{n})[^{n/s}_{k/s}]{_q}^s$$ and conjectured that $O^{n,k}_d(q)$ have non-negative coefficients. In this paper we give a combinatorial proof for the positivity of coefficients of the orbit polynomial $O^{n,3}_d(q)$.

CONSTRUCTIVE PROOF FOR THE POSITIVITY OF THE ORBIT POLYNOMIAL On,2d(q)

  • Lee, Jaejin
    • Korean Journal of Mathematics
    • /
    • v.25 no.3
    • /
    • pp.349-358
    • /
    • 2017
  • The cyclic group $C_n={\langle}(12{\cdots}n){\rangle}$ acts on the set $(^{[n]}_k)$ of all k-subsets of [n]. In this action of $C_n$ the number of orbits of size d, for d | n, is $$O^{n,k}_d={\frac{1}{d}}{\sum\limits_{{\frac{n}{d}}{\mid}s{\mid}n}}{\mu}({\frac{ds}{n}})(^{n/s}_{k/s})$$. Stanton and White [6] generalized the above identity to construct the orbit polynomials $$O^{n,k}_d(q)={\frac{1}{[d]_{q^{n/d}}}}{\sum\limits_{{\frac{n}{d}}{\mid}s{\mid}n}}{\mu}({\frac{ds}{n}})[^{n/s}_{k/s}]_{q^s}$$ and conjectured that $O^{n,k}_d(q)$ have non-negative coefficients. In this paper we give a constructive proof for the positivity of coefficients of the orbit polynomial $O^{n,2}_d(q)$.