• Title/Summary/Keyword: pseudo-static

Search Result 170, Processing Time 0.03 seconds

Dynamic Factor of Safety Calculation of Slope by Nonlinear Response History Analysis (비선형 응답이력해석을 통한 사면의 동적 안전계수 계산)

  • Lee, Yonghee;Kim, Hak-Sung;Ju, Young-Tae;Kim, Daehyeon;Park, Heon-Joon;Park, Duhee
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.9
    • /
    • pp.5-12
    • /
    • 2021
  • Pseudo-static slope stability analysis method is widely used in engineering practice to calculate the seismic factor of safety of slope subjected to earthquake ground motions. Although the dynamic analysis method is well recognized to have the primary advantage of simulating the stress-strain response of soils, it is not often used in practice because of the difficult in estimating the factor of safety. In this study, a procedure which utilizes the dynamic analysis method to extract the transient dynamic factor of safety is devleoped. This method overcomes the major limitation of the pseudo-static method, which uses an empirically determined seismic coefficient to derive the factor of safety. The proposed method is applied to a slope model and the result is compared with that of the pseudo-static method. It is shown that minimum dynamic factor of safety calculated by the dynamic analysis is slightly larger than that determined from the pseudo-static method. It is also demonstrated that the dynamic factor of safety becomes minimum when the horizontal seismic coefficient and horizontal average acceleration are maximum.

Temperature-Adaptive Back-Bias Voltage Generator for an RCAT Pseudo SRAM

  • Son, Jong-Pil;Byun, Hyun-Geun;Jun, Young-Hyun;Kim, Ki-Nam;Kim, Soo-Won
    • ETRI Journal
    • /
    • v.32 no.3
    • /
    • pp.406-413
    • /
    • 2010
  • In order to guarantee the proper operation of a recessed channel array transistor (RCAT) pseudo SRAM, the back-bias voltage must be changed in response to changes in temperature. Due to cell drivability and leakage current, the obtainable back-bias range also changes with temperature. This paper presents a pseudo SRAM for mobile applications with an adaptive back-bias voltage generator with a negative temperature dependency (NTD) using an NTD VBB detector. The proposed scheme is implemented using the Samsung 100 nm RCAT pseudo SRAM process technology. Experimental results show that the proposed VBB generator has a negative temperature dependency of -0.85 $mV/^{\circ}C$, and its static current consumption is found to be only 0.83 ${\mu}A$@2.0 V.

2D numerical modelling of soil-nailed structures for seismic improvement

  • Panah, Ali Komak;Majidian, Sina
    • Geomechanics and Engineering
    • /
    • v.5 no.1
    • /
    • pp.37-55
    • /
    • 2013
  • An important issue in the design of soil-nailing systems, as long-term retaining walls, is to assess their stability during seismic events. As such, this study is aimed at simulating the dynamic behavior and failure pattern of nailed structures using two series of numerical analyses, namely dynamic time history and pseudo-static. These numerical simulations are performed using the Finite Difference Method (FDM). In order to consider the actual response of a soil-nailed structure, nonlinear soil behaviour, soil-structure interaction effects, bending resistance of structural elements and construction sequences have been considered in the analyses. The obtained results revealed the efficiency of both analysis methods in simulating the seismic failure mechanism. The predicted failure pattern consists of two sliding blocks enclosed by three slip surfaces, whereby the bottom nails act as anchors and the other nails hold a semi-rigid soil mass. Moreover, it was realized that an increase in the length of the lowest nails is the most effective method to improve seismic stability of soil-nailed structures. Therefore, it is recommended to first estimate the nails pattern for static condition with the minimum required static safety factor. Then, the required seismic stability can be obtained through an increase in the length of the lowest nails. Moreover, placement of additional long nails among lowest nails in existing nailed structures can be considered as a simple retrofitting technique in seismic prone areas.

Exterior Joint Behavior of Low-Rise Reinforced Concrete Frame with Non-Seismic Detail (비내진 상세를 가진 저층 R.C조의 외부접합부 거동)

  • 김영문;기찬호;장준호;이세웅;김상대
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04b
    • /
    • pp.481-486
    • /
    • 1998
  • In this paper, elastic and inelastic behavior of exterior joint of moment-resisting R.C frame with non-seismic detail subjected to reversed cyclic lateral load such as earthquake excitations was investigated. 1/2-scals subassemblage exterior beam-column joint including slab was manufactured based on similitude law. Then, pseudo static test under the displacement control was performed. The results of 1)crack pattern and failure mode, 2)degradation stiffness and strength, energy dissipation capacity from load-displacement hysteresis curve, 3)strain of steel were analysed.

  • PDF

The Comparision of Analysis Methods in dynamic Design of Dam based on Shaking Table tests (진동대시험에 근거한 댐의 내진설계시 해석 방법의 비교)

  • Hwang, Seong-Choon;Oh, Byung-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.732-737
    • /
    • 2005
  • This paper performed pseudo static analysis and dynamic analysis for CFRD and evaluated reliability with the results of Shaking Table Test. The Seismic coefficient method, modified seismic coefficient method, Newmark method of Pseudo static analysis and frequency domain response analysis, time domain history analysis of dynamic analysis were used. The analysis results were differ between analysis method, but the trends of acceleration and displacement were good agreement with the results of shaking table test.

  • PDF

Development of Seismic Stability Evaluation Technology for Rock Foundation of Nuclear Power Plant (원전 기초지반의 내진안정성 평가절차 개발)

  • Hwang, Seong-Chun;Jang, Jung-Bum;Lee, Dae-Su;Kim, Yun-Chil
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.74-81
    • /
    • 2005
  • The purpose of this study is to suggest a proper analysis model that can evaluate seismic stability for local rock foundation of nuclear power plant. Sliding Analysis, Pseudo-static Analysis and Danamic Analysis methods are used for analysing NPP rock foundation with the conditions like acting directions of input earthquake, boundary conditions, width and depth of analysing model, and modeling methods of weakness fault zones. As the results of study, Pseudo-static Analysis for lateral roller and dynamic analysis for transfer boundary condition showed good results, and analysing ranges of width and depth were 5 times of structure width and over 2 times of structure depth.

  • PDF

A study on determination of target displacement of RC frames using PSV spectrum and energy-balance concept

  • Ucar, Taner;Merter, Onur;Duzgun, Mustafa
    • Structural Engineering and Mechanics
    • /
    • v.41 no.6
    • /
    • pp.759-773
    • /
    • 2012
  • The objective of this paper is to present an energy-based method for calculating target displacement of RC structures. The method, which uses the Newmark-Hall pseudo-velocity spectrum, is called the "Pseudo-velocity Spectrum (PSVS) Method". The method is based on the energy balance concept that uses the equality of energy demand and energy capacity of the structure. First, nonlinear static analyses are performed for five, eight and ten-story RC frame structures and pushover curves are obtained. Then the pushover curves are converted to energy capacity diagrams. Seven strong ground motions that were recorded at different soil sites in Turkey are used to obtain the pseudo-acceleration and the pseudo-velocity response spectra. Later, the response spectra are idealised with the Newmark-Hall approximation. Afterwards, energy demands for the RC structures are calculated using the idealised pseudo-velocity spectrum. The displacements, obtained from the energy capacity diagrams that fit to the energy demand values of the RC structures, are accepted as the energy-based performance point of the structures. Consequently, the target displacement values determined from the PSVS Method are checked using the displacement-based successive approach in the Turkish Seismic Design Code. The results show that the target displacements of RC frame structures obtained from the PSVS Method are very close to the values calculated by the approach given in the Turkish Seismic Design Code.

Critical setback distance for a footing resting on slopes under seismic loading

  • Shukla, Rajesh Prasad;Jakka, Ravi S.
    • Geomechanics and Engineering
    • /
    • v.15 no.6
    • /
    • pp.1193-1205
    • /
    • 2018
  • A footing located on slopes possess relatively lower bearing capacity as compared to the footing located on the level ground. The bearing capacity further reduces under seismic loading. The adverse effect of slope inclination and seismic loading on bearing capacity can be minimized by proving sufficient setback distance. Though few earlier studies considered setback distance in their analysis, the range of considered setback distance was very narrow. No study has explored the critical setback distance. An attempt has been made in the present study to comprehensively investigate the effect of setback distance on footing under seismic loading conditions. The pseudo-static method has been incorporated to study the influence of seismic loading. The rate of decrease in seismic bearing capacity with slope inclination become more evident with the increase in embedment depth of footing and angle of shearing resistance of soil. The increase in bearing capacity with setback distance relative to level ground reduces with slope inclination, soil density, embedment depth of footing and seismic acceleration. The critical value of setback distance is found to increase with slope inclination, embedment depth of footing and density of soil. The critical setback distance in seismic case is found to be more than those observed in the static case. The failure mechanisms of footing under seismic loading is presented in detail. The statistical analysis was also performed to develop three equations to predict the critical setback distance, seismic bearing capacity factor ($N_{{\gamma}qs}$) and change in seismic bearing capacity (BCR) with slope geometry, footing depth and seismic loading.

Snap back testing of unbonded post-tensioned concrete wall systems

  • Twigden, Kimberley M.;Henry, Richard S.
    • Earthquakes and Structures
    • /
    • v.16 no.2
    • /
    • pp.209-219
    • /
    • 2019
  • Unbonded Post-Tensioned (UPT) precast concrete systems have been shown to provide excellent seismic resistance. In order to improve understanding of the dynamic response of UPT systems, a series of snap back tests on four UPT systems was undertaken consisting of one Single Rocking Wall (SRW) and three Precast Wall with End Columns (PreWEC) systems. The snap back tests provided both a static pushover and a nonlinear free vibration response of a system. As expected the SRW exhibited an approximate bi-linear inertia force-drift response during the free vibration decay and the PreWEC walls showed an inertia force-drift response with increased strength and energy dissipation due to the addition of steel O-connectors. All walls exhibited negligible residual drifts regardless of the number of O-connectors or the post-tensioning force. When PreWEC systems of the same strength were compared the inclusion of further energy dissipating O-connectors was found to decrease the measured peak wall acceleration. Both the local and global wall parameters measured at pseudo-static and dynamic loading rates showed similar behaviour, which demonstrates that the dynamic behaviour of UPT walls is well represented by pseudo-static tests. The SRW was found to have Equivalent Viscous Damping (EVD) between 0.9-3.8% and the three PreWEC walls were found to have maximum EVD of between 14.7-25.8%.

A Discussion on the Definitions of Seismic Coefficient for Gravity Quay Wall in Korea (국내 중력식 안벽의 수평지진계수 산정 방법에 대한 고찰)

  • Lee, Moon Gyo;Jo, Seong Bae;Cho, Hyung Ik;Park, Heon Joon;Kim, Dong Soo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.21 no.2
    • /
    • pp.77-85
    • /
    • 2017
  • Pseudo-static approach has been conventionally applied for the design of gravity quay walls. In this method, the decision to select an appropriate seismic coefficient ($k_h$) is an important one, since $k_h$ is a key variable for computing an equivalent pseudo-static inertia force. Nonetheless, there is no unified standard for defining $k_h$. Likewise, port structure designers in Korea have a difficulty in choosing an appropriate $k_h$ definition, as there are conflicts in how $k_h$ is defined between the existing seismic code of port structures and the proposed new one. In this research, various seismic design codes for port structures were analyzed to compare the definitions of the seismic coefficient. The results were used for the proposing a unified seismic coefficient definition. Further, two dynamic centrifuge tests were performed with different wall heights (5 m, 15 m) to clarify the reference point of peak acceleration used in determination of $k_h$ according to the wall height. Results from dynamic centrifuge experiments showed that correction factors for the peak ground acceleration considering both the wall height and allowable displacement are needed to calculate $k_h$.