• Title/Summary/Keyword: pseudo-random sequences

Search Result 37, Processing Time 0.025 seconds

APPROXIMATING RANDOM COMMON FIXED POINT OF RANDOM SET-VALUED STRONGLY PSEUDO-CONTRACTIVE MAPPINGS

  • LI JUN;HUANG NAN JING
    • Journal of applied mathematics & informatics
    • /
    • v.17 no.1_2_3
    • /
    • pp.329-341
    • /
    • 2005
  • In this paper, we introduce new random iterative sequences with errors approximating a unique random common fixed point for three random set-valued strongly pseudo-contractive mappings and show the convergence of the random iterative sequences with errors by using an approximation method in real uniformly smooth separable Banach spaces. As applications, we study the existence of random solutions for some kind of random nonlinear operator equations group in separable Hilbert spaces.

A Comparison of Three Fixed-Length Sequence Generators of Synthetic Self-Similar Network Traffic (Synthetic Self-Similar 네트워크 Traffic의 세 가지 고정길이 Sequence 생성기에 대한 비교)

  • Jeong, Hae-Duck J.;Lee, Jong-Suk R.
    • The KIPS Transactions:PartC
    • /
    • v.10C no.7
    • /
    • pp.899-914
    • /
    • 2003
  • It is generally accepted that self-similar (or fractal) processes may provide better models for teletraffic in modern telecommunication networks than Poisson Processes. If this is not taken into account, it can lead to inaccurate conclusions about performance of telecommunication networks. Thus, an important requirement for conducting simulation studies of telecommunication networks is the ability to generate long synthetic stochastic self-similar sequences. Three generators of pseudo-random self-similar sequences, based on the FFT〔20〕, RMD〔12〕 and SRA methods〔5, 10〕, are compared and analysed in this paper. Properties of these generators were experimentally studied in the sense of their statistical accuracy and times required to produce sequences of a given (long) length. While all three generators show similar levels of accuracy of the output data (in the sense of relative accuracy of the Horst parameter), the RMD- and SRA-based generators appear to be much faster than the generator based on FFT. Our results also show that a robust method for comparative studies of self-similarity in pseudo-random sequences is needed.

Generation of Finite Inductive, Pseudo Random, Binary Sequences

  • Fisher, Paul;Aljohani, Nawaf;Baek, Jinsuk
    • Journal of Information Processing Systems
    • /
    • v.13 no.6
    • /
    • pp.1554-1574
    • /
    • 2017
  • This paper introduces a new type of determining factor for Pseudo Random Strings (PRS). This classification depends upon a mathematical property called Finite Induction (FI). FI is similar to a Markov Model in that it presents a model of the sequence under consideration and determines the generating rules for this sequence. If these rules obey certain criteria, then we call the sequence generating these rules FI a PRS. We also consider the relationship of these kinds of PRS's to Good/deBruijn graphs and Linear Feedback Shift Registers (LFSR). We show that binary sequences from these special graphs have the FI property. We also show how such FI PRS's can be generated without consideration of the Hamiltonian cycles of the Good/deBruijn graphs. The FI PRS's also have maximum Shannon entropy, while sequences from LFSR's do not, nor are such sequences FI random.

CLASSIFICATION OF QUASIGROUPS BY RANDOM WALK ON TORUS

  • MARKOVSKI SMILE;GLIGOROSKI DANILO;MARKOVSKI JASEN
    • Journal of applied mathematics & informatics
    • /
    • v.19 no.1_2
    • /
    • pp.57-75
    • /
    • 2005
  • Quasigroups are algebraic structures closely related to Latin squares which have many different applications. There are several classifications of quasigroups based on their algebraic properties. In this paper we propose another classification based on the properties of strings obtained by specific quasigroup transformations. More precisely, in our research we identified some quasigroup transformations which can be applied to arbitrary strings to produce pseudo random sequences. We performed tests for randomness of the obtained pseudo-random sequences by random walks on torus. The randomness tests provided an empirical classification of quasigroups.

Image Encryption Based on One Dimensional Nonlinear Group Cellular Automata (1차원 비선형 그룹 셀룰라 오토마타 기반의 영상 암호)

  • Choi, Un-Sook;Cho, Sung-Jin;Kim, Tae-Hong
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.12
    • /
    • pp.1462-1467
    • /
    • 2015
  • Pixel values of original image can be changed by XORing pixel values of original image and pixel values of the basis image obtained by pseudo random sequences. This is a simple method for image encryption. This method is an effect method for easy hardware implementation and image encryption with high speed. In this paper we propose a method to obtain basis image with pseudo random sequences with large nonlinearity using nonlinear cellular automata and maximum length linear cellular automata. And experimental results showed that the proposed image encryption scheme has large key space and low correlation of adjacent cipher pixel values.

Algorithmic Generation of Self-Similar Network Traffic Based on SRA (SRA 알고리즘을 이용한 Self-Similar 네트워크 Traffic의 생성)

  • Jeong HaeDuck J.;Lee JongSuk R.
    • The KIPS Transactions:PartC
    • /
    • v.12C no.2 s.98
    • /
    • pp.281-288
    • /
    • 2005
  • It is generally accepted that self-similar (or fractal) Processes may provide better models for teletraffic in modem computer networks than Poisson processes. f this is not taken into account, it can lead to inaccurate conclusions about performance of computer networks. Thus, an important requirement for conducting simulation studies of telecommunication networks is the ability to generate long synthetic stochastic self-similar sequences. A generator of pseudo-random self similar sequences, based on the SRA (successive random addition) method, is implemented and analysed in this paper. Properties of this generator were experimentally studied in the sense of its statistical accuracy and the time required to produce sequences of a given (long) length. This generator shows acceptable level of accuracy of the output data (in the sense of relative accuracy of the Hurst parameter) and is fast. The theoretical algorithmic complexity is O(n).

Construction of Jacket Matrices Based on q-ary M-sequences (q-ary M-sequences에 근거한 재킷 행렬 설계)

  • S.P., Balakannan;Kim, Jeong-Ki;Borissov, Yuri;Lee, Moon-Ho
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.7
    • /
    • pp.17-21
    • /
    • 2008
  • As with the binary pseudo-random sequences q-ary m-sequences possess very good properties which make them useful in many applications. So we construct a class of Jacket matrices by applying additive characters of the finite field $F_q$ to entries of all shifts of q-ary m-sequence. In this paper, we generalize a method of obtaining conventional Hadamard matrices from binary PN-sequences. By this way we propose Jacket matrix construction based on q-ary M-sequences.

A Novel Measuring Method of In-plane Position of Contact-Free Planar Actuator Using Binary Grid Pattern Image (이진 격자 패턴 이미지를 이용한 비접촉식 평면 구동기의 면내 위치(x, y, $\theta$) 측정 방법)

  • 정광석;정광호;백윤수
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.7
    • /
    • pp.120-127
    • /
    • 2003
  • A novel three degrees of freedom sensing method utilizing binary grid pattern image and vision camera is presented. The binary grid pattern image is designed by Pseudo-Random Binary Arrays and referenced to encode in-plane position of a moving stage of the contact-free planar actuator. First, the yaw motion of the stage is detected using fast image processing and then the other planar positions, x and y, are decoded with a sequence of images. This method can be applied to the system that needs feedback of in-plane position, with advantages of a good accuracy and high resolution comparable with the encoder, a relatively compact structure, no friction, and a low cost. In this paper, all the procedures of the above sensing mechanism are described in detail, including simulation and experiment results.

Time Hopping Sequences Based on Pseudo Random Codes for Ultra Wideband Impulse Radio Systems

  • Kim, Sanhae;Park, Kwang-Hee;Suckchel Yang;Kim, Hak-Seong;Yoan Shin
    • Proceedings of the IEEK Conference
    • /
    • 2002.07b
    • /
    • pp.1350-1353
    • /
    • 2002
  • A new form of spread spectrum technique called the ultra wideband impulse radio (UWB-IR) system has drawn much attention for future high speed wireless communication services. In this paper, a new type of time hopping sequences constructed from multiple distinct m-sequences of the same order, is proposed for multiple access in the UWB-IR systems. Simulation results reveal that the proposed time hopping sequences achieve comparable or even better bit error rate performance than the ideal random sequences, and can be effectively applied in various multiple access situations.

  • PDF

PRaCto: Pseudo Random bit generator for Cryptographic application

  • Raza, Saiyma Fatima;Satpute, Vishal R
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.12
    • /
    • pp.6161-6176
    • /
    • 2018
  • Pseudorandom numbers are useful in cryptographic operations for using as nonce, initial vector, secret key, etc. Security of the cryptosystem relies on the secret key parameters, so a good pseudorandom number is needed. In this paper, we have proposed a new approach for generation of pseudorandom number. This method uses the three dimensional combinational puzzle Rubik Cube for generation of random numbers. The number of possible combinations of the cube approximates to 43 quintillion. The large possible combination of the cube increases the complexity of brute force attack on the generator. The generator uses cryptographic hash function. Chaotic map is being employed for increasing random behavior. The pseudorandom sequence generated can be used for cryptographic applications. The generated sequences are tested for randomness using NIST Statistical Test Suite and other testing methods. The result of the tests and analysis proves that the generated sequences are random.