DOI QR코드

DOI QR Code

Synthetic Self-Similar 네트워크 Traffic의 세 가지 고정길이 Sequence 생성기에 대한 비교

A Comparison of Three Fixed-Length Sequence Generators of Synthetic Self-Similar Network Traffic

  • 발행 : 2003.12.01

초록

최근의 통신 네트워크에서 teletraffic의 양상은 Poisson 프로세스보다 self-similar프로세스에 의해서 더 잘 반영된다. 이는 통신 네트워크의 teletraffic에 관련하여 self-similar한 성질을 고려하지 않는다면, 통신 네트워크의 성능에 관한 결과는 부정확 할 수밖에 없다는 의미가 된다. 따라서, 통신 네트워크에 관한 시뮬레이션을 수행하기 위한 매우 중요한 요소 중에 하나는 충분히 긴 self-similar한 sequence를 얼마나 잘 생성하느냐의 문제이다. 본 논문에서는 FFT〔20〕, RMD〔12〕 그리고 SRA〔5, 10〕 방법을 이용한 세 개의 pseudo-random self-similar sequence 생성기를 비교 분석하였다. 본 Pseudo-random self-similar sequence 생성기의 성질을 매우 긴 sequence를 생성하는데 요구되는 통계적인 정확도와 생성시간에 대해서 분석하였다. 세 개의 pseudo-random self-similar sequence 생성기의 성능은 Hurst 변수의 상대적인 정확도로 보았을 때는 유사했으나, RMD와 SRA 방법을 이용한 pseudo-random self-similar sequence 생성기가 FFT 방법을 이용한 것보다 속도 면에서는 훨씬 빠른 것으로 나타났다. 또한 본 연구를 통해서 pseudo-random self-similar sequence 생성기의 비교분석을 위한 좀더 좋은 방법이 필요하다는 것을 보여주었다.

It is generally accepted that self-similar (or fractal) processes may provide better models for teletraffic in modern telecommunication networks than Poisson Processes. If this is not taken into account, it can lead to inaccurate conclusions about performance of telecommunication networks. Thus, an important requirement for conducting simulation studies of telecommunication networks is the ability to generate long synthetic stochastic self-similar sequences. Three generators of pseudo-random self-similar sequences, based on the FFT〔20〕, RMD〔12〕 and SRA methods〔5, 10〕, are compared and analysed in this paper. Properties of these generators were experimentally studied in the sense of their statistical accuracy and times required to produce sequences of a given (long) length. While all three generators show similar levels of accuracy of the output data (in the sense of relative accuracy of the Horst parameter), the RMD- and SRA-based generators appear to be much faster than the generator based on FFT. Our results also show that a robust method for comparative studies of self-similarity in pseudo-random sequences is needed.

키워드

참고문헌

  1. J. Beran, 'Statistical Methods for Data with Long Range Dependence,' Statistical Science, Vol. 7(4), pp. 404-427, 1992 https://doi.org/10.1214/ss/1177011122
  2. J. Beran, Statistics for Long-Memory Processes, Chapman and Hall, New York, 1994
  3. M. C. Cario and B. L. Nelson, 'Numerical Methods for Fitting and Simulating Autoregressive-to-Anything Processes,' INFORMS Journal on Computing, Vol. 10(1), pp. 72-81, 1998 https://doi.org/10.1287/ijoc.10.1.72
  4. D. R. Cox, 'Long-Range Dependence : a Review,' Statistics: An Appraisa, Iowa State Statistical Library, The Iowa State University Press, H. A. David and H. T. David(eds.), pp. 55-74, 1984
  5. A. J. Crilly, R. A. Earnshaw and H. Jones, Fractals and Chaos, Springer-Verlag, New York, 1991
  6. M. W. Garrett and W. Willinger, 'Analysis, Modeling and Generation of Self-Similar VBR Video Traffic,' Computer Communication Review, Proceedings of ACM SIGCOMM'94, London, UK, Vol. 24(4), pp. 269-280, 1994 https://doi.org/10.1145/190809.190339
  7. J. D. Gibbons and S. Chakraborti, Nonparametric Statistical Inference, Marcel Dekker, Inc., New York, 1992
  8. C. W. J. Granger, 'Long Memory Relationshops and the Aggregation of Dynamic Models,' Journal of Econometrics, North-Holland Publishing Company, Vol. 14, pp. 227-238, 1980 https://doi.org/10.1016/0304-4076(80)90092-5
  9. J. R. M. Hosking, 'Modeling Persistence in Hydrological Time Series Using Fractional Differencing,' Water Resources Research, Vol. 20(12), pp. 1898-1908, 1984 https://doi.org/10.1029/WR020i012p01898
  10. H. J. Jeong and J. R. Lee, 'Algorithmic Generation of Self-Similar Network Traffic Based on SRA,' Korea Information Processing Society Review, 2003(Submitted)
  11. M. Krunz and A. Makowski, 'A Source Model for VBR Video Traffic Based on $M/G/{\infty}$ Input Processes,' Proceedings of IEEE INFOCOM '98, San Francisco, CA, USA, pp. 1441-1448, 1998
  12. W-C. Lau, A. Erramilli, J. L. Wang and W. Willinger, 'Self-Similar Traffic Generation : the Random Midpoint Displacement Algorithm and its Properties,' Proceedings of IEEE International Conference on Communications (ICC'95), Seattle, WA, pp. 466-472, 1995 https://doi.org/10.1109/ICC.1995.525213
  13. W. E. Leland, M. S. Taqqu, W. Willinger and D. V. Wilson, 'On the Self-Similar Nature of Ethernet Traffic (Extended Version),' IEEE ACM Transactions on Networking, Vol. 2(1), pp. 1-15, 1994 https://doi.org/10.1109/90.282603
  14. N. Likhanov, B. Tsybakov and N. D. Georganas, 'Analysis of an ATM Buffer with Self-Similar ( https://doi.org/10.1109/INFCOM.1995.515974
  15. B. B. Mandelbrot, 'A Fast Fractional Gaussian Noise Generator,' Water Resources Research, Vol. 7, pp. 543-553, 1971 https://doi.org/10.1029/WR007i003p00543
  16. B. B. Mandelbrot and J. R. Wallis, 'Computer Experiments with Fractional Gaussian Noises,' Water Resources Research, Vol. 5(1), pp. 228-267, 1969 https://doi.org/10.1029/WR005i001p00228
  17. A. L. Neidhardt and J. L. Wang, 'The Concept of Relevant Time Scales and its Application to Queueing Analysis of Self-Similar Traffic (or Is Hurst Naughty or Nice?),' Performance Evaluation Review, Proceedings of ACM SIGMETRICS'98, Madison, Wisconsin, USA, pp. 222-232, 1998 https://doi.org/10.1145/277858.277923
  18. I. Norros, 'A Storage Model with Self-Similar Input,' Queueing Systems, Vol. 16, pp. 387-396, 1994 https://doi.org/10.1007/BF01158964
  19. K. Park and W. Willinger, 'Self-Similar Network Traffic and Performance Evaluation,' chapter 'Self-Similar Network Traffic : An Overview,' John Wiley & Sons, Inc., K. Park and W. Willinger (eds), New York, pp. 1-38, 2000
  20. V. Paxson, Fast Approximation of Self-Similar Network Traffic, Lawrence Berkeley Laboratory and EECS Division, University of California, Berkeley (No.LBL-36750), 1995
  21. V. Paxson and S. Floyd, 'Wide-Area Traffic : the Failure of Poisson Modeling,' IEEE ACM Transactions on Networking, Vol. 3(3), pp. 226-244, 1995 https://doi.org/10.1109/90.392383
  22. H.-O. Peitgen and H. Jurgens and D. Saupe, Chaos and Fractals : New Frontiers of Science, Springer-Verlag, New York, 1992
  23. H.-O. Peitgen and D. Saupe, The Science of Fractal Images, Springer-Verlag, New York, 1988
  24. W. H. Press and B. P. Flannery and S. A. Teukolsky and W.T. Vetterling, Numerical Recipes : The Art of Scientific Computing, Cambridge University Press, Cambridge, 1986
  25. O. Rose, Traffic Modeling of Variable Bit Rate MPEG Video and Its Impacts on ATM Networks, PhD thesis, Bayerische Julius-Maximilians-Universitat Wurzburg, 1997
  26. B. K. Ryu, Fractal Network Traffic : from Understanding to Implications, PhD thesis, Graduate School of Arts and Sciences, Columbia Univeristy, 1996
  27. M. Taqqu, 'Self-Similar Processes,' Encyclopedia of Statistical Sciences, John Wiley and Sons, Inc., S. Kotz and N. Johnson (eds), New York, Vol. 8, 1988
  28. T. Taralp, M. Devetsikiotis, I. Lambadaris and A. Bose, 'Efficient Fractional Gaussian Noise Generation Using the Spatial Renewal Process,' Proceedings of IEEE International Conference on Communications (ICC'98), Atlanta, GA, USA, pp. 7-11, 1998 https://doi.org/10.1109/ICC.1998.683067