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A Comparison of Three Fixed-Length Sequence Generators
of Synthetic Self-Similar Network Traffic

HaeDuck J. Jeong'- JongSuk R. Lee'!

ABSTRACT

1t 1s generally accepted that self-similar (or fractal) processes may provide better models for teletraffic in modern telecommunication networks
than Poisson processes. If this is not taken into account, it can lead to inaccurate conclusions about performance of telecommunication networks.
Thus, an important requirement for conducting simulation studies of telecommunication networks is the ability to generate long synthetic
stochastic self-similar sequences. Three generators of pseudo-random self-similar sequences, based on the FFT [20], RMD [12] and SRA
methods [5,10], are compared and analysed in this paper. Properties of these generators were experimentally studied in the sense of their
statistical accuracy and times required to produce sequences of a given (long) length. While all three generators show similar levels of accuracy
of the output data (in the sense of relative accuracy of the Hurst parameter), the RMD- and SRA-based generators appear to be much faster
than the generator based on FFT. Our results also show that a robust method for comparative studies of self-similarity in pseudo-random
sequences is needed.

FIHE : Seif-Similar Z2MA(Self-Similar Process), Self-Similar THZ0|(Self-Similar Fixed-Length), Sequence 4M7|(Se-
quence Generator), Hurst E(Hurst Parameter), Teletraffic, SN HEH I (Telecommunication Network)

1. Introduction based on Poisson or related processes, are not able to capture
the self-similar (or fractal) nature of teletraffic [13, 14, 21,
26], especially when they are engaged in such sophisticated
services as variable-bit-rate (VBR) video transmission (6,

The search for accurate mathematical models of data
streams in modern telecommunication networks has at-
tracted a considerable amount of interest in the last few 11,25). The properties of teletraffic in such scenarios are
years. The reason is that several recent teletraffic studies
of local and wide area networks, including the world wide

web, have shown that commonly used teletraffic models,

very different from both the properties of conventional
models of telephone traffic and the traditional models of data
traffic generated by computers.
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nication networks, insufficient allocation of communication
and data processing resources, and difficulties in ensuring
the quality of service expected by network users [1, 17, 21].
On the other hand, if the strongly correlated character of
teletraffic is explicitly taken into account, this can also lead
to more efficient traffic control mechanisms.

Several methods for generating pseudo-random self-
similar sequences have been proposed. They include meth-
ods based on fast fractional Gaussian noise [15], fractional
ARIMA processes [9], the M/G/e queue model [11,13],
autoregressive processes [3,8], spatial renewal processes
[28], etc. Some of them generate asymptotically self-similar
sequences and require large amounts of CPU time. For
example, Hosking’s method [9], based on the F-ARIMA(0,
d,0) process, needs many hours to produce a self-similar
sequence with 131,072(2") numbers on a Sun SPARC-
station 4 [13]. It requires O(»®) computations to generate
n numbers. Even though exact methods of generation of
self-similar sequences exist (for example : [15]), they are
only fast enough for short sequences. They are usually
inappropriate for generating long sequences because they
require multiple passes along generated sequences. To
overcome this, approximate methods for generation of self-
similar sequences in simulation studies of telecommuni-
cation networks have also been proposed [12, 20].

Our comparative evaluation of three methods proposed for
generating self-similar sequences concentrates on two
aspects : @ how accurately self-similar processes can be
generated, and @ how fast the methods generate long
self-similar sequences. We consider three methods : @ a
method based on the fast Fourier transform (FFT) algo-
rithm and implemented by Paxson[20] ; @ a method based
on the random midpoint displacement (RMD) algorithm and
implemented by Lau, Erramilli, Wang and Willinger [12] ;
and @ a method based on the successive random addition
(SRA) algorithm, proposed by Saupe, D. [5] and implemented
by Jeong [10].

A summary of the basic properties of self-similar proc-
esses is given in Section 2. In Section 3 the three generators
of pseudo-random self-similar sequences are described. Nu-
merical results of comparative analysis of sequences gene—

rated by these generators are discussed in Section 4.

2. Self-Similar Processes and Their Properties

One can distinguish two types of stochastic self-sim-

ilarity. A continuous-time stochastic process Y, is strictly
self-similar with a self-similarity parameter H(1/2 < H< 1),
if ¥, and Y, (the rescaled process with time scale ct)
have identical finite-dimensional probability for any posi-
tive time stretching factor ¢ [2, 19, 27). This means that,
for any sequence of time points #,, ¢,+,¢,, and for any
c>0,

(Yo, YY) = {CHYtpCHYtZ,'“,CHYr,},

where = denotes equivalence in distribution. This def-
inition of the strictly self-similarity is in a sense of prob—
ability distribution {or narrow sense), quite different from
that of the second-order self-similar process (or self-
similar process in a broad sense). Self-similarity in the
broad sense is observed at the mean, variance and auto-
correlation level, whereas self-similarity in the narrow
sense is observed at the probability distribution level.

When the weakly continuous-time self-similar process
Y, has stationary increments, i.e., the finite- dimensional

probability distributions of ¥ ,,+,— Y, do not depend on ¢y,

we can construct a stationary incremental process X=
{X;,=Y,.,—Y;, : i=0,1,2,---}. Namely, in the discrete-
time case, let X be a (discrete-time) stationary incremen-
tal process with mean = E[ X1, variance ¢*=E E[(X
— %1, and (normalized) autocorrelation function (ACF)
{0}, £=0,1,2,-, where

E((X;— )X iy p— )]

Or = 0_2 (1)

X is strictly stationary if {X,, X, X} and {X ;14
X iim . X i +1) DOssess the same joint distribution.

However, we limit our attention to processes with a weaker
form of stationarity, i.e., second-order stationarity (or weak,
broad, or wide sense stationarity). Let X ™ = {X{™, X",

-}, m=1,2,3,--, be a sequence of batch means, that is,
X =K it X, i 21, @

and let {0 ™} denote the ACF of X . The process X is

called exactly second-order self-similar with 0.5 < H <
1, if for all m=1,

oi™ = p, k=0. (3

In other words, the process X and the aggregated proc-
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esses X" m=1, have an identical correlation structure.
The process X is asymptotically second-order self-similar
with 0.5 < H <1, if for all k large enough,

o™ > p, as m > o, (4

The most frequently studied models of self-similar traffic
belong either to the class of fractional autoregressive in-
tegrated moving-average (F-ARIMA) processes or to the
class of fractional Gaussian noise processes; see [9, 13, 20].
F-ARIMA(p, d, g) processes were introduced by Hosking
(9] who showed that they are asymptotically self-similar
with Hurst parameter H=d+1/2, as long as 0<d<1/2.
In addition, the incremental process {Y,}={X,— X -1},
k > 0, is called the fractional Gaussian noise (FGN) proc-
ess, where {X,} designates a fractional Brownian motion
(FBM) random process. This process is a (discrete-time)
stationary Gaussian process with mean g, variance ¢2 and
{oad={1/2(| k+ 112" =2 K *+|k—1]*)}, k > 0. An FBM
process, which is the sum of FGN increments, is char-
acterized by three properties [16] : @D it is a continuous
zero-mean Gaussian process {X,})={X, :s=0and 0< H
<1} with ACF given by e, = 1/2(s¥*+ ¥ ~|s—¢| ")
where s is time lag and ¢ is time; © its increments
{X,—X,.;} form a stationary random process ; @ it is
self-similar with Hurst parameter H, that is, for all ¢ > 0,
{X 4}=1{c¥X,}, in the sense that, if time is changed by
the ratio ¢, then {X,} is changed by ¢”

Main properties of self-similar processes include ([2, 4,
13 :

® Slowly decaying variance : The variance of the sample
mean decreases more slowly than the reciprocal of the
non-overlapping batch size m, i.e., Var[ {X{™} ] — c;m #,
as m — o, where ¢, is a constant and 0< 8, (1.

® [ong-range dependence : A process {X,} is called a

stationary process with long-range dependence (LRD)
if its ACF {p,} is non-summable, i.e., /eZO ox= . The

speed of decay of autocorrelations is more hyperbolic
than exponential.

® Hurst effect : Historically, the importance of self-similar
processes lies in the fact that they provide an elegant
explanation and interpretation of strong correlations in
some empirical data. Namely, for a given sequence of

random variables X= {X;}".,= {X}, X, -, X,}, one can

consider the so—called rescaled adjusted range R(t, m)/
S(t, m)(or R/S-statistic), with

R(t, m)= max ;[ Ny, — N,— i(zvm,,—zv,), 0<i<ml
— min ;[ Ny, —N,—i(NHm—N,), 0<i<ml, ()

t
where 1 < ¢< #», m is the batch size and N,= ;} X;;and

+m _
S(t,m)=\/m_lvt§1(X,‘— Xem)?, (6)

where X,,=m"' 2 X

Hurst found empirically that for many time series ob-
served in nature, the expected value of R(t, m)/S(¢, m)

asymptotically satisfies the power-law relation :

R{¢, m)

El S(¢, m)

1= com® as m — oo, with ;— CH!,

where ¢, is a finite positive constant [2]. This empirical
finding was in contradiction to previously known results
for Markovian and related processes. For a stationary
process with SRD, E[R (¢ m) /S (¢, m)] behaves asympto—
tically like a constant times m Y2 Therefore, for large
values of m, the R/S-statistic plot is randomly scattered
around a straight line with slope 1/2. Hurst's finding that
for the Nile River data, and for many other hydrological,
geophysical, and climatological data, R(¢, m)/S(¢, m) is
randomly scattered around a straight line with slope
H >1/2, is known as the Hurst effect, and H is known as
the Hurst parameter (or self-similarity parameter). Man-
delbrot and Wallis [16] showed that the Hurst effect can
be modelled by FGN with the self-similarity parameter
1/2 <H<1.

® /f-noise : The spectral density f(A ; H) obeys a power

A 1-2H

law near the origin, i.e., f(A; H) = ¢ ,as A— 0,

where c; is a finite positive constant and 0.5 < H < 1.

We will use these properties to investigate character—
istics of generated self-similar sequences. In simulation of
telecommunication networks, given a sequence of the ap—

proximate FBM process {X,}, we can obtain a self-similar
cumulative arrival process {Y,} [12,18] :{Y,} = M+
VAM{X .}, te (—oo,+ ) where M is the mean input rate

and A is the peakedness factor, defined as the ratio of
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variance to the mean, M >0, A>0. The Gaussian in-
cremental process { ¥,} from time ¢ to time ¢ +1 is given

s: { P y=M+VAM [{X ) — X))

3. Three Generators of Fixed-Length Self-Similar
Sequences

The FFT- and RMD-based methods were suggested as
being sufficiently fast for practical applications in gen-
eration of simulation input data [12, 201. In this paper, we
have reported properties of these two methods and compare
them with SRA, one of recently proposed alternative meth-
ods for generating pseudo-random self-similar sequences

[10]. These methods can be characterized as follows :

3.1 FFT method

This method generates approximate self-similar se-
quences based on the Fast Fourier Transform and a process
known as the Fractional Gaussian Noise (FGN) process,
(Figure 1). Its main difficulty is connected with calculating
the power spectrum, which involves an infinite summation.
Paxson has solved this problem by applying a special ap-
proximation.

(Figure 1) shows how the FFT method generates self-
similar sequences. Briefly, it is based on @ calculation of
the power spectrum using the periodogram (the power
spectrum at a given frequency represents an independent
exponential random variable) ; @ construction of complex
numbers which are governed by the normal distribution ;
@ execution of the inverse FFT. An overview of the FFT
method to generate sequences given below, follows. For a

more detailed reference, see [20].

FO"" Construct -
! =
H normally distributed Inverse Ncrmalnsauon :esﬂ;:'c"e‘"a'
0 1 pcctrum complex numbers q

Uniformly distributed
random numbers

(Figure 1) FFT method
This leads to the following algorithm :

Step. 1 Generate a sequence of values {f},, f./2}, Where

fi= F(2mif/ n,H), corresponding to the power
spectrum of a FGN process for frequencies from
27/ n to =, 1/2 < H < 1. For a FGN process, the

power spectrum f(A, H) is defined as

FAH)=AWHIA ¥ 1+ B(ALH), D

for 0<H<1 and —# <A< x, where

A(A, H) = 2sin(zH)T'2H+1)(1— cos i), ®
8

B(A,H) = E_,I[(Z;ri+/1) T (2mi—A) THTN.
As mentioned the infinite summation in Equation
(7) for B(A, H) is the main difficulty in computing
the power spectrum. He [20] proposed to use the
approximation given by Equation (9) instead of
Equation (8) :

BAH) ~ a’+bi4+al+bi+al+bt
. . . ) 9
. al +6f +ad +b9
8Hr
where d= —2H—1, d =—2H, a;=2in+4A,
b;=2ir—A.

Step. 2 Adjust the sequence of values {f,,,f.;2} for
estimating power spectrum using periodogram.

Step. 3 Generate {Z,,...,Z,;}, a sequence of complex

values such that |Z,/=V 7, and the phase of Z;
is uniformly distributed between 0 and 27 .

Step. 4 Construct {Zg,-.Z .-}, an expanded version of

{Z1,Z a2} -
0, if i =0,
Z;= 27, if 0<137,and
Zoi if 2 (i

2

where Z,_, denotes the complex conjugate of
Z -1 {Z;} retains the power spectrum used in
constructing {Z,}, but because it is symmetric
about Z,,, it now corresponds to the FFT of a
real-valued signal.

Step. 5 Calculate inverse FFT {Z;} to obtain the ap-
proximate FGN sequence {X,}.

3.2 RMD method

The basic concept of the random midpoint displacement
(RMD) algorithm is to extend the generated sequence
recursively, by adding new values at the midpoints from
the values at the endpoints.

(Figure 2) outlines how the RMD algorithm works.
(Figure 3) illustrates the first three steps of the method,
leading to generation of the sequence (ds 1, d32, d3,3, d3.4).
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The reason for subdividing the interval between 0 and 1
is to construct the Gaussian increments of X. Adding off~
sets to midpoints makes the marginal distribution of the
final result normal. For more detailed discussions of the
RMD method, see [12, 22].

Subdivide .

t t Add afisets l A self-simitar
intervaif0,1} Normalisation:
recursively ta midpoints sequence

Uniforrly distributed  Gaussian randem
randa aumbers aumbers

{Figure 2} RMD method

dy

do | i daz das

{Figure 3) The first three steps in the RMD method

Step. 1 If the process X{¢) is to be computed for time
instance ¢ between 0 and 1, then start out by
setting X{(0) = 0 and selecting X (1) as a pseudo-
random number from a Gaussian distribution with
mean 0 and variance Var[ X (1D)}=¢f. Then Var
[X (1)~ X(O]=0i.

Step. 2 Next, X(1/2) is constructed as the average of
X(0yand X (1), thatis, X(1/2)= 1/2(X () +
X(1)+d,. The offset 4, is a Gaussian random
number (GRN}, which should be multiplied by a
sealing factor 1/2, with mean 0 and variance S?
of d,. Compare the visualization of this step and
the next one in {(Figure 3). For Var[ X (%)~ X(#)]

=]t~ 65 to be true, for 0< ¢y, 51, it
must be required that Ver{X{(1/2) - X(Q)1=1/4
Var[ X(1) ~ X1+ S1=(1/2)*0f. Thus
Si=(1/2H%(1 -2 o}

Step. 3 Reduce the scaling factor by V2, that is, now as~
sume 1/vY8, and divide the two intervals from 0
and 1/2 and from 1/2 to 1 again. X(1/4) is set
as the average 1/2(X(0)+ X(1/2)) plus an off-
set oy 5, which is a GRN multiplied by the current
scaling factor 1/v8. The corresponding formula
holds for X(3/4), that is, X{3/4)=1/2{X(1/

2)+ X)) +d,4 where dy 5 is a random offset
computed as before. So the variance $§ of oy,
must be chosen such that Vax{ X(1/4) —X(0)1=
1/4 Vel X(1/2) = X1+ S5= (1/2%) Y.
Thus
Si=(1/2H(1 -2 e,

Step. 4 The fourth step proceeds in the same manper :
reduce the scaling factor by V2, that is, do
1/V16. Then set

1.t 1
X(?)— 7 (X + X¢ i N+ dsy,

3 1 1 1
X(—S’)=‘é—(X(*Z“)+X('2“‘))+d3,2,
Sy bog 1 3
X(~8—)~ 5 {(X( 5 )+ X{ 3 Wt das,
7 1 3

In each formula, d3. is computed as a different
GRN multiplied by the current scaling factor
1/¥16. The following step computes X(¢) at
t=1/16,3/16,-,15/16, using a scaling factor
again reduced by V2, and continues as indicated
above. So the variance S§of 5. must be chosen
such that Var(X {1/ 8) —~ X(0))=1/4 Var{X (14 —
X (00 + 8% = (1/2°)* o}, that is, Si=(1/2%%
(1—-2%"%) The variance S% of d,., therefore,

yields (1/2%)%#(1—2% %4

3.3 SRA method

Another alternative method for the direct generation of
FBM process is based on the successive random addition
{SRA) algorithm [5]. The SRA method uses the midpoints
like RMD, but adds a displacement of a suitable variance
to all of the points to increase stability of the generated
sequence {23},

1& {memate J L isction o A SEESIMIEY
midpoints to 2l points sequence

Uniforrdy distributed Gausstan random
random nurrbers

{Figure 4) SRA method

(Figure 4) shows how the SRA method generates an
approximate self-similar sequence. The reason for interpo-
lating midpoints is to construct Gaussian increments of X,
which are correlated. Adding offsets to all points should
make the resulted sequence self-similar and of normal dis~
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tribution [23].
The SRA method consists of the following steps :

Step. 1 If the process {X,} is to be computed for times

instances ¢t between 0 and 1, then start out by
setting X,=0 and selecting X, as a pseudo-

random number from a Gaussian distribution with
mean 0 and variance Var[X;]= o2. Then Var[X,
- X,d=o08.

Step. 2 Next, X/, is constructed by the interpolation of
the midpoint, that is, X ,,,=1/2(X,+ X)).

Step. 3 Add a displacement of a suitable variance to all
of the points, ie., Xy=Xo+d; 1, X 12=X 12+
dy3, X)=X,+d, 3 The offsets d,, are governed
by fractional Gaussian noise. For Var[X,—X,]
=|t,—t1# o} to be true, for any #, 4, 0< 4 <

tzsl it is required that Var( X 1/2_X0]: 1/4

Var[X,— X1 +2S8%=(1/2) ¥ 6%, that is, Si= .

1/21/2")#H (1 -2 2o},
Step. 4 Next, Step.2 and Step.3 are repeated. Therefore,
S2=1/2(1/2")#(1-2%"%)¢Z where ¢ is an

initial variance and 0 < H < 1.

Using the above steps, the SRA method generates an
approximate self-similar FBM sequence.

4. Analysis of Self-Similar Sequences

Three generators of self-similar sequences of pseudo-
random numbers described in the Section 3 have been
implemented in C on a Sun SPARCstation 4 (110MHz, 32
MB), and used to generate self-similar cumulative arrival
processes, mentioned at the end of Section 2. The mean
times required for generating sequences of a given length
were obtained by using the SunOS 5.5 date command and
averaged over 30 iterations, having generated sequences of
32,768 (2%), 131,072 (2"7), 262,144 ( 2'), 524,288 (2") and
1,048576 (2%) numbers.

We have also analysed the efficiency of these methods
in the sense of their accuracy. For each of H =05, 0.55,
0.7, 0.9, 0.95, each method was used to generate over 100
sample sequences of 32,768 (2%®) numbers starting from
different random seeds. Self-similarity and marginal distri-
butions of the generated sequences were assessed by ap-
plying the best currently available techniques. These in-
clude :

® Anderson-Darling goodness-of-fit test : used to show
that the marginal distribution of sample sequences
generated by all three methods is normal or almost
normal, since all three methods are based on Gaussian
processes. This test is more powerful than Kolmogorov-
Smirnov when testing against a specified normal dis—
tribution [71.

® Sequence plot : used to show that a generated sequence
has LRD properties with the assumed H value.

® Periodogram plot : used to show whether a generated
sequence is LRD or not. It can be shown that if the
autocorrelations were summable, then near the origin the
periodogram should be scattered randomly around a
constant. If the autocorrelations were non-summable,
i.e., LRD, the points of a sequence are scattered around
a negative slope. The periodogram plot is obtained by
plotting log ,(periodogram) against log y(frequency). An

estimate of the Hurst parameter is given by H=(1
—B5)/2 where 8, is the slope [2].

® /S statistic plot : graphical R/S analysis of empirical
data can be used to estimate the Hurst parameter H.
An estimate of H is given by the asymptotic slope 83

of the R/S statistic plot, i.e, H=28; [2].

® Variance-time plot : is obtained by plotting log 1o( Var
(X "™ Y)against log,(m) and by fitting a simple least
square line through the resulting points in the plane. An
estimate of the Hurst parameter is given by H=1—8,/2
where B, is the slope [2].

e Whittle’s approximate maximum likelihood estimate
(MLE) :is a more refined data analysis method to

obtain confidence intervals (Cls) for the Hurst parameter
H [2]

4.1 Analysis of Accuracy
We have summarised the results of our analysis in the
following :

® Anderson-Darling goodness—of-fit test was applied to
test normality of sample sequences. The results of the
tests, executed at the 5% significance level, showed that
the generated sequences could be considered as normally
distributed for all but a few sequences with the high
value of H ; as see <Table 1> for Anderson-Darling
test and <Table 2> for Kolmogorov-Smirnov test, the
former test is more powerful than the latter test when
testing against a specified normal distribution.
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(Table 1) Percentages(%) of Anderson-Darling goodness-of-fit
test for normality at the 5% significance level. Each
size of sample sequences is 32,768 numbers

Percentages of the Normal Distribution of 100 Samples
Method
05 0.5 0.7 09 095
FFT 100 100 928 59 34
RMD 97 97 ] 64 338
SRA 97 97 9% 58 32

{Table 2> Percentages(%) of Kolmogorov-Smirnov goodness-
of-fit test for normality at the 5% significance lev-
¢l. Each size of sample sequences is 32,768 num-

bers
Percentages of the Normal Distribution of 100 Samples
Method
05 055 0.7 09 095
FFT 100 100 100 9% 9
RMD 100 100 100 % 80
SRA 100 100 100 % 72

e Sequence plots in (Figure 5)~(Figure 7) show higher
levels of correlation of data as the H value increases.
In other words, generated sequences have the evidence
of LRD properties.

The estimates of Hurst parameter obtained from the

Sequence plot for FFT method (H = 0.55)
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Sequence plot for FFT method (H=0.9)

Values(seed = 1)
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Sequence

2000 2500

periodogram, the R/S statistic, the variance-time and

Whittle's MLE, have been used to compare the accu-

racy of the three methods. The relative inaccuracy 4H

i

s calculated using the formula: 4H=(( H—H)/H)x

100% where H is the input value and T is an empir-

i

cal mean value. The presented numerical results are

all averaged over 100 sequences.

® The periodogram plots have slopes decreasing as H
increases and also see (Figure 8)~(Figure 10). The
negative slopes of all our plots for H = 0.5, 0.55, 0.7, 0.9,
0.95 were the evidence of self-similarity. A comparison
of relative inaccuracy 4H of the estimated Hurst param-—
eters of three methods using periodogram plot is given
in <Table 3> ; also see (Figure 17). We see that in the
most cases parameter H of the FFT method was closer
to the required value than in the case of the RMD and
SRA methods, although the relative inaccuracy degrades
with increasing H (but never exceeds 6%). The analysis
of periodograms suggest that the FFT method always
produces self-similar sequences with positively biased
H, while sequences produced by two other methods are
negatively biased.

Sequence plot for FFT method (H=0.7)
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(Figure 5) Sequence plots for the FFT method for H = 0.55, 0.7, 0.9 and 0.95
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Sequence plot for RMD method (H = 0.55)
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(Figure 7) Sequence plots for the SRA method for H# = 0.55, 0.7, 0.9 and 0.99
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(Figure 10) Periodogram plots for the SRA method for 4 = 0.55, 0.7, 0.9 and 0.95

{Table 3> Relative inaccuracy JH estimated from periodogram

plots
H FFT RMD SRA
05 +0.07% -0.01% -0.08%
055 +1.26% -1.31% -1.41%
07 +314% -3.74% ~3.78%
09 +3.93% -5.10% ~513%
095 +3.99% -5.28% -531%

® The plots of R/S statistic clearly confirmed the self-

similar nature of the generated sequences and also see

{Figure 11) ~ (Figure 13). The relative inaccuracy 4H of

tained by the variance-time plot; also see (Figure 19).
Again, all three methods show comparable quality of the
output sequences in the sense of H, with the relative
inaccuracy increasing with the increase in H, but re-
maining below 8%. This time, all resuits but one suggest
that the output seguences are negatively biased H, re-
gardless of the method.

® The results for Whittle estimator of H with the cor~

responding 95% Cls T +1.9 7, see <Table 6>, show
that for all input H values, Cls for the FFT method cover
the assumed theoretical values, while the RMD and SRA
methods produce sequences weaker correlated than

expected (except H = 0.5),

the estimated Hurst parameter, obtained by R/S statistic
plot, is given in <Table 4> ; also see (Figure 18). As
we see, these results suggest that the FFT method is
slightly better than the other two {(but for H = 0.9, 0.95).
This method of analysis of H does not link any of these
generators with persistently negative or positive bias of
H, as the periodogram plots did.

® The variance-time plots also supported the claim that
generated sequences were self-similar and also see (Fi-
gure 14)~ (Figure 16). <Table 5> gives the relative
inac-curacy 45 of the estimated Hurst parameters ob~

QOur results show that all three generators produce ap-
proximately self-similar sequences, with the relative inac-
curacy 4H increasing with H, but always staying below
10%. Apparently there is a problem with more detailed
comparative studies of such generators, since different
methods of analysis of the Hurst parameter can give very

different results regarding the bias of # characterising the

same output sequences. More reliable methods for assess—
ment of self-similarity in pseudo-random sequences are

needed.
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R/S statistic plot for FFT method (H = 0.55)

35
3 .
251
2
151
1t
05}
------ slope 1
or e slope 1/2
- 1 L I § s T  S—
0.5 1 15 2 25 3 35 4
10g10(lags k)
R/S statistic plot for FFT method (H = 0.9)
3.5
3+
25F
2 -
151
1k
051
A slope 1
or s = slope 1/2
b 1 L PR s T T I
0.5 1 15 2 25 3 35 4
log10(lags k)
(Figure 11) R/S statistic plots for the FFT
R/S statistic plot for RMD method (H = 0.55)
35
3 -
25F
2+
151
1}
0.5
------- slope 1
R e slope 1/2
. L 1 \ T I T
05 1 15 2 25 3 35 4
log10(iags k)
RIS statistic plot for RMD method (H = 0.9)
351
3+
251
2+
15
1 -
05+
----- slope 1
o Iem e slope 1/2
L 1 1 1 1
05 1 15 2 25 3 35 4

log10(lags k)

log10(r/s)(seed = 1)

R/S statistic plot for FFT method (H = 0.7)

slope 1
slope 1/2

log10(r/s)(seed = 1}

05 1 1.5 2 25 3 35 4

log10(lags k)

R/S statistic plot for FFT7 method (H = 0.95)

slope 1
slope 1/2

1 ) 1 1 I\ I

method

log10(r/s)(seed = 1)

0.5 1 15 2 25 3 35 4

log10(lags k)

for #=10.56, 0.7, 0.9 and 0.95

RIS statistic plot for RMD method (H = 0.7)

------ slope 172

log10(r/s)(seed = 1)

1 145 2 25 3 35 4
log10(lags k)

RIS statistic plot for RMD method (H = 0.95)

slope 1
=== slope 1/2

(=]

05

1 15 2 25 3 35 4
log10(lags k)

(Figure 12) R/S statistic plots for the RMD method for 4 = 0.55, 0.7, 0.9 and 0.95
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{Table 4) Relative inaccuracy 4H estimated from R/S statistic

plots
H FFT RMD SRA
05 +7.34% +8.74% +8.71%
055 +5.32% +6.28% +6.23%
07 +0.82% +1.28% +1.26%
09 -5.02% -4.46% -4.44%
0% -6.89% -6.34% -6.31%

(Table 5) Relative inaccuracy 4H estimated from variance-

time plots
H FFT RMD SRA
05 -0.85% +0.57% -2.76%
055 -1.00% -0.19% -291%
0.7 -1.88% -1.76% -3.38%
0.9 -5.39% -5.29% -6.00%
0% -6.98% -691% -747%

(Table 6) Estimated mean values of H using Whittle's MLE.
Each Cl is for over 100 sample sequences. 95% Cls
for the means are given in parentheses

Method Mean Values of Estimated H

0.5 0.55 0.7 09 095

FFT 500 550 700 900 949
(490, 510) { (540, 560) | (691, .710) | (891, .909) | (940, .938)

RMD 500 538 658 826 870
(490, 510) | (528, 548) | (647, .666) | (817, .835) |(.861, .879)

SRA 500 538 656 82 869
(490, 510) | (528, 547) | (647, .666) | (.816, .834) | (860, .878)

Hurst parameter estimates using peridodgram plot
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(Figure 17) Estimation of Hurst parameter by periodogram plot
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(Figure 18) Estimation of Hurst parameter by R/S statistic plot
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(Figure 19) Estimation of Hurst parameter by variance-time
plot

42 Computational Complexity

The results of our experimental analysis of mean times
needed by the three generators for generating pseudo-
random self-similar sequences of a given length are shown

in <Table 7>. The main conclusions are listed below.

(Table 7> Complexity and mean running times of generators.
Running times were obtained by using the Sun0S
5.5 date command on a Sun SPARCstation 4 (110
MHz, 32MB) : each mean is averaged over 30 iter-
ations.

Sequence of

. 32,768 | 131,072 | 262,144 | 524288 |1,048576
Method | Complexity Numbers | Numbers | Numbers | Numbers | Numbers

Mean running time (minute : second )

FFT | Olnlogn) 0:5 0:20 } 0:35 1:12 | 3:47

RND Ooln) 0:3 0:11 0:29 | 0:40 1:33

SRA Oln) 0:3 0:10 0:20 0:40 1:31

® FFT method is the slowest of the three analysed meth-
ods. This is caused by relatively high complexity of the
inverse FFT algorithm. <Table 7> shows its time com-~
plexity and the mean running time. It took 5 seconds
to generate a sequence of 32,768 (2") numbers, while
generation of a sequence with 1,048576 ( 2%) numbers
took 3 minutes and 47 seconds. FFT method requires
O(nlognr) computations to generate n numbers [20, 24].

® RMD method is faster and simpler than FFT. <Table
7> shows its time complexity and the mean running
time. Generation of a sequence with 32,768 ( 2 ) numbers
took 3 seconds. It also took 1 minute and 33 seconds
to generate a sequence of 1,048,576 (2?) numbers. The
theoretical algorithmic complexity is O(») [23].

e SRA method appears to be as fast as RMD. <Table 7>
shows its time complexity and the mean running time.

The theoretical algorithmic complexity is O(») [23].
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In summary, our results show that the generators based
on RMD and SRA are faster in practical applications than
the generator based on FFT, when long self-similar se-
quences of numbers are needed.

5. Conclusions

In this paper we have presented the results of a compar—
ative analysis of three generators of (long) pseudo-random
self-similar sequences. It appears that all three generators,
based on FFT, RMD and SRA, generate approximately
self-similar sequences, with the relative inaccuracy of the
resulted H below 9%, if 0.5 < H<(.95. On the other hand,
the analysis of mean times needed for generating sequences
of given lengths shows that two generators (based on RMD
and SRA) should be recommended for practical simulation
of telecommunication networks, since they are much faster
than the generator based on FFT. Our study has also re-
vealed that a robust method for comparative studies of self-
similarity in pseudo-random sequences is needed, since
currently available methods can provide inconclusive proofs
of accuracy of such sequences. This is the direction of our

current research.
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