SRA 알고리즘을 이용한 Self-Similar 네트워크 Traffic의 생성 해 덕'·이 종 숙" #### Я 약 최근의 컴퓨터 네트워크에서 teletraffic의 양상은 Poisson 프로세스보다 self-similar 프로세스에 의해서 더 잘 반영된다. 이는 컴퓨터 네 트워크의 teletraffic에 관련하여 self-similar한 성질을 고려하지 않는다면, 컴퓨터 네트워크의 성능에 관한 결과는 부정확 할 수밖에 없다는 의미가 된다. 따라서, 통신 네트워크에 관한 시뮬레이션을 수행하기 위한 매우 중요한 요소 중에 하나는 충분히 긴 self-similar한 sequence 를 얼마나 잘 생성하느냐의 문제이다. 본 논문에서는 SRA (successive random addition) 방법을 이용한 pseudo-random self-similar sequence 생성기를 구현 및 분석하였다. 본 pseudo-random self-similar sequence 생성기의 성질을 매우 긴 sequence를 생성하는데 요구되 는 통계적인 정확도와 생성시간에 대해서 분석하였다. 본 논문에서 제안한 SRA 방법을 이용한 pseudo-random self-similar sequence 생성 기의 성능은 Hurst 변수의 상대적인 정확도로 보았을 때, 그리고 sequence의 생성시간을 고려했을 때에 적합함을 보였다. 이 생성기의 이론 적 complexity는 n개의 난수를 발생하는데 O(n)이 요구된다. ## Algorithmic Generation of Self-Similar Network Traffic Based on SRA HaeDuck J. Jeong JongSuk R. Lee T #### **ABSTRACT** It is generally accepted that self-similar (or fractal) processes may provide better models for teletraffic in modern computer networks than Poisson processes. If this is not taken into account, it can lead to inaccurate conclusions about performance of computer networks. Thus, an important requirement for conducting simulation studies of telecommunication networks is the ability to generate long synthetic stochastic self-similar sequences. A generator of pseudo-random self similar sequences, based on the SRA (successive random addition) method, is implemented and analysed in this paper. Properties of this generator were experimentally studied in the sense of its statistical accuracy and the time required to produce sequences of a given (long) length. This generator shows acceptable level of accuracy of the output data (in the sense of relative accuracy of the Hurst parameter) and is fast. The theoretical algorithmic complexity is O(n). 키워드: Self-similar 프로세스(Self-similar Process), Self-similar sequence 생성기(Self-similar Sequence Generator), Hurst 변수 (Hurst Parameter), Teletraffic, 통신 네트워크(Telecommunication Network) #### 1. Introduction The search for accurate mathematical models of data streams in modern computer networks has attracted a considerable amount of interest in the last few years. The reason is that several recent teletraffic studies of local and wide area networks, including the world wide web, have shown that commonly used teletraffic models, based on Poisson or related processes, are not able to capture the self-similar (or fractal) nature of teletraffic [12], [13], [19], [22], especially when they are engaged in such sophisticated services as variable-bit-rate (VBR) video transmission [6], [10], [21]. The properties of teletraffic in such scenarios are very different from both the properties of conventional models of telephone traffic and the traditional models of data traffic generated by computers. The use of traditional models of teletraffic can result in overly optimistic estimates of performance of computer networks, insufficient allocation of communication and data The authors thank anonymous referees for their valuable comments. This work was partially supported by the Korean Bible University's Research Grant. ^{*} 정 회 원: 한국성서대학교 정보과학부 교수 ** 정 회 원: 한국과학기술정보연구원 슈퍼컴퓨팅센터그리드연구실 선임연구원 논문접수: 2003년 6월 9일, 심사완료: 2005년 3월 10일 processing resources, and difficulties in ensuring the quality of service expected by network users [1], [16], [19]. On the other hand, if the strongly correlated character of teletraffic is explicitly taken into account, this can also lead to more efficient traffic control mechanisms. Several methods for generating pseudo-random selfsimilar sequences have been proposed. They include methods based on fast fractional Gaussian noise [14], fractional ARIMA processes [9], the $M/G/\infty$ queue model [10], [12], autoregressive processes [3], [8], spatial renewal processes [23], etc. Some of them generate asymptotically self-similar sequences and require large amounts of CPU time. For example, Hosking's method [9], based on the F-ARIMA(0, d. 0) process, needs many hours to produce a self-similar sequence with 131,072 (217) numbers on a Sun SPARC station 4 [12]. It requires $O(n^2)$ computations to generate n numbers. Even though exact methods of generation of self-similar sequences exist (for example: [14]), they are only fast enough for short sequences. They are usually inappropriate for generating long sequences because they require multiple passes along generated sequences. To overcome this, approximate methods for generation of self-similar sequences in simulation studies of computer networks have been also proposed [11], [18]. Our evaluation of the method proposed for generating self-similar sequences concentrates on two aspects: (i) how accurately a self-similar process can be generated, and (ii) how fast the method generates long self-similar sequences. We consider our implementation of a method based on the *successive random addition* (SRA) algorithm, proposed by Saupe, D. [5]. Summary of the basic properties of self-similar processes is given in Section 2. In Section 3 a generator of pseudo-random self-similar sequences based on SRA is described. Numerical results of analysis of sequences generated by this generator are discussed in Section 4. #### 2. Self-Similar Processes and Their Properties Basic definitions of self-similar processes are as follows: A continuous-time stochastic process $\{X_i\}$ is strongly self-similar with a self-similarity parameter H(0 < H < 1), known as the Hurst parameter, if for any positive stretching factor c, the rescaled process with time scale ct, $c^HX_{c\theta}$ is equal in distribution to the original process $\{X_i\}$ [2]. This means that, for any sequence of time points t_1, t_2, \cdots, t_n , and for all c > 0, $\{c^HX_{ct_1}, c^HX_{ct_2}, \cdots, c^HX_{ct_n}\}$ has the same distribution as $\{X_{t_1}, X_{t_2}, \cdots, X_{t_n}\}$. In discrete-time case, let $\{X_k\} = \{X_k : k=0,1,2,\cdots\}$ be a (discrete-time) stationary process with mean μ , variance σ^2 , and autocorrelation function (ACF) $\{\rho_k\}$, for $k=0,1,2,\cdots$, and let $\{X_k^{(m)}\}_{k=1}^\infty = \{X_1^{(m)},X_2^{(m)},\cdots\}, m=1,2,3,\cdots$, be a sequence of batch means, i.e., $X_k^{(m)} = (X_{km-m+1} + \cdots + X_{km})/m$, $k \ge 1$. The process $\{X_k\}$ with $\rho_k \to k^{-\beta}$, as $k \to \infty$, $0 < \beta < 1$, is called *exactly self-similar* with $H = 1 - (\beta/2)$, if $\rho_k^{(m)} = \rho_k$ for any $m = 1, 2, 3, \cdots$. In other words, the process $\{X_k\}$ and the averaged processes $\{X_k^{(m)}\}$, $m \ge 1$, have identical correlation structure. The process $\{X_k\}$ is asymptotically self-similar with $H = 1 - (\beta/2)$, if $\rho_k^{(m)} \to \rho_k$ as $m \to \infty$. The most frequently studied models of self-similar traffic belong either to the class of fractional autoregressive integrated moving-average (F-ARIMA) processes or to the class of fractional Gaussian noise processes; see [9], [12], [18]. F-ARIMA(p, d, q) processes were introduced by Hosking [9] who showed that they are asymptotically self-similar with Hurst parameter H = d + 0.5, as long as 0 < d < 0.5. In addition, the incremental process $\{Y_k\} = \{X_k - X_{k-1}\}, k \ge 0$, is called the fractional Gaussian noise (FGN) process, where $\{X_k\}$ designates a fractional Brownian motion(FBM) random process. This process is a (discrete-time) stationary Gaussian process with mean μ , variance σ^2 and $\{\rho_k\} = \{\frac{1}{2}(|k+1|^{2H} - 2|k|^{2H} + |k-1|^{2H})\}, k > 0.$ An FBM process, which is the sum of FGN increments, is characterized by three properties [15]: (i) it is a continuous H < 1 with ACF given by $\rho_{s,t} = \frac{1}{2} (s^{2H} + t^{2H} - |s-t|^{2H})$ where s is time lag and t is time; (ii) its increments $\{X_t - X_{t-1}\}\$ form a stationary random process; (iii) it is self-similar with Hurst parameter H, that is, for all c > 0, $\{X_{ci}\} = \{c^H X_i\}$, in the sense that, if time is changed by the ratio c, then $\{X_i\}$ is changed by c^H . Main properties of self-similar processes include ([2], [4], [12]): - Slowly decaying variance: The variance of the sample mean decreases more slowly than the reciprocal of the non-over-lapping batch size m, that is, $Van\{\{X_k^{(m)}\}\} \rightarrow c_1 m^{-\beta_1}$ as $m \rightarrow \infty$, where c_1 is a constant and $0 < \beta_1 < 1$. - Long-range dependence: A process $\{X_k\}$ is called a stationary process with long-range dependence (LRD) if its ACF $\{\rho_k\}$ is non-summable, that is, $\sum_{k=0}^{\infty} \rho_k = \infty$. The speed of decay of autocorrelations is more like hyperbolic than exponential. • Hurst effect: Self-similarity manifests itself by a straight line of slope β_2 on a log-log plot of the R/S statistic. For a given sequence of random variables $\{X_1, X_2, \dots, X_n\}$, one can consider the so-called rescaled adjusted range R(t, m) (or R/S-statistic), with $$\begin{split} R(t,m) &= \ \, \max_{i} \ \, [Y_{t+i} - Y_{t} - \frac{i}{m} (Y_{t+m} - Y_{t}), 0 \leq i \leq m] \, - \\ & \min_{i} \ \, [Y_{t+i} - Y_{t} - \frac{i}{m} (Y_{t+m} - Y_{t}), 0 \leq i \leq m], \ \, \text{where} \end{split}$$ $$1 \le t \le n$$, m is the batch size and $Y_t = \sum_{i=1}^t X_i$; and $S(t, m) = \sqrt{m^{-1} \sum_{i=t+1}^{t+m} (X_i - \overline{X}_{t,m})^2}$, where $\overline{X}_{t,m} = m^{-1}$ $\sum_{i=1}^{n+m} X_i$. Hurst found empirically that for many time series observed in nature, the expected value of $\frac{R(t,m)}{S(t,m)}$ asymptotically satisfies the power-law relation: $E[\frac{R(t,m)}{S(t,m)}] \rightarrow c_2 m^H$, as $m \to \infty$ with 0.5 < H < 1, where c_2 is a finite positive constant [2]. In simulation of computer networks, given a sequence of the approximate FBM process $\{X_i\}$, we can obtain a self-similar cumulative arrival process {Y,} [11], [17]: $\{Y_t\} = Mt + \sqrt{AM}\{X_t\}, t \in (-\infty, +\infty)$ where M is the mean input rate and A is the peakedness factor, defined as the ratio of variance to the mean, M > 0, A > 0. The Gaussian incremental process $\{\widetilde{Y}_t\}$ from time t to time t+1 is given as: $\{\widetilde{Y}_t = M + \sqrt{AM} [\{X_{t+1}\} - \{X_t\}].$ #### 3. A Generator of Self-Similar Sequences Based on SRA We suggest that the SRA-based method is as being sufficiently fast for practical applications in generation of simulation input data. In this paper, we report properties of the successive random addition (SRA), one of recently proposed alternative methods for generating pseudo-random self-similar sequences. The C code of our implementation of the SRA algorithm is in Appendix A. This method can be characterized as follows by a diagram shown in (Fig. 1) (Fig. 1) The SRA method The SRA method uses the midpoints like Random Midpoint Displacement (RMD) algorithm (for more detailed discussions, see [5]), but adds a displacement of a suitable variance to all of the points to increase stability of the generated sequence. The reason for interpolating midpoints is to construct Gaussian increments of X, which are correlated. Adding offsets to all points should make the resulted sequence self-similar and of normal distribution [20]. The SRA method consists of the following steps: - Step.1 If the process $\{X_i\}$ is to be computed for times instances t between 0 and 1, then start out by setting $X_0 = 0$ and selecting X_1 as a pseudo-random number from a Gaussian distribution with mean 0 and variance $Var[X_1] = \sigma_0^2$. Then $Var[X_1 - X_0] = \sigma_0^2$. - Step.2 Next, $X_{1/2}$ is constructed by the interpolation of the midpoint, that is, $X_{1/2} = \frac{1}{2}(X_0 + X_1)$. - Step.3 Add a displacement of a variance (see the below S_1^2 how it is achieved.) to all of the points, i.e., $X_0 = X_0 + d_{1,1}, \ X_{\frac{1}{2}} = X_{\frac{1}{2}} + d_{1,2}, \ X_1 = X_1 + d_{1,3}.$ The offsets $d_{1,*}$ are governed by fractional Gaussian noise. For $Var[X_t, -X_t] = |t_2 - t_1|^{2H} \sigma_0^2$ to be true, for any t_1 , t_2 , $0 \le t_1 \le t_2 \le 1$, it is reuired that $Var[X_{\frac{1}{2}} - X_0] = \frac{1}{4} Var[X_1 - X_0] + 2S_1^2 = (\frac{1}{2})^{2H}\sigma_0^2,$ that is, $S_1^2 = \frac{1}{2} (\frac{1}{2^1})^{2H} (1 - 2^{2H-2}) \sigma_0^2$ - Step.4 Next, Step.2 and Step.3 are repeated until the required numbers n of a sequence are reached. Therefore, $S_n^2 = \frac{1}{2} (\frac{1}{2^n})^{2H} (1 - 2^{2H-2}) \sigma_0^2$, where σ_0^2 is an initial variance and 0 < H < 1. Using the above steps, the SRA method generates an approximate self-similar FBM process. #### 4. Analysis of Self-Similar Sequences The generator of self-similar sequences of pseudo-random numbers described in the Section 3 has been implemented in C on a Sun SPARCstation 4 (110 MHz, 32 MB), and used to generate self-similar cumulative arrival processes, mentioned at the end of Section 2. The mean times required for generating sequences of a given length were obtained by using the SunOS 5.5 date command and averaged over 30 iterations, having generated sequences of 32,768 (2 15), 131,072 (2 17), 262,144 (2 18), 524,288 (2 19) and 1,048,576 (2 20) numbers. We have also analysed the efficiency of the method in the sense of its accuracy. For each of H = 0.5, 0.55, 0.7,0.9, 0.95, the method was used to generate over 100 sample sequences of 32,768 (215) numbers starting from different random seeds. Self-similarity and marginal distributions of the generated sequences were assessed by applying the (Fig. 2) Sequence plots for the SRA method for $H=0.55,\ 0.7,\ 0.9$ and 0.95. (Fig. 3) Periodogram plots for the SRA method for H = 0.55, 0.7, 0.9 and 0.95. best currently available techniques. These include: • Anderson-Darling goodness-of-fit test: used to show that the marginal distribution of sample sequences generated by the method is, as required, normal (or almost normal). This test is more powerful than Kolmogorov-Smirnov when testing against a specified normal distribution [7]. - Sequence plot: used to show that a generated sequence has LRD properties with the assumed H value. - Periodogram plot: used to show whether a generated sequence is LRD or not. It can be shown that if the autocorrelations were summable, then near the origin the periodogram should be scattered randomly around a constant. If the autocorrelations were non-summable, i.e., LRD, the points of a sequence are scattered around a negative slope. The periodogram plot is obtained by plotting \log_{10} (periodogram) against \log_{10} (frequency). An estimate of the Hurst parameter is given by $\widehat{H} = (1 - \beta_3)/2$ where β_3 is the slope [2]. - R/S statistic plot: graphical R/S analysis of empirical data can be used to estimate the Hurst parameter H. An estimate of H is given by the asymptotic slope β_2 of the R/S statistic plot, i.e., $\widehat{H} = \beta_2$ [2]. - Variance-time plot: is obtained by plotting log 10 $(Var(X^{(m)}))$ against $log_{10}(m)$ and by fitting a simple least square line through the resulting points in the plane. An estimate of the Hurst parameter is given by $\hat{H} = 1 - \beta_1/2$ where β_1 is the slope [2]. - Whittle's approximate maximum likelihood estimate(MLE): is a more refined data analysis method to obtain confidence intervals (CIs) for the Hurst parameter H [2]. #### 4.1 Analysis of Accuracy We have summarised the results of our analysis in the following: • Anderson-Darling goodness-of-fit test was applied to test normality of sample sequences. The results of the tests, executed at the 5% significance level, showed that for H = 0.5, 0.55, 0.7, the generated sequences are normally distributed, but for H = 0.9, 0.95, they with the high value of H are weaker normally distributed than the former ones with the low value of H; see also <Table 1>. · Sequence plots in (Fig. 2) show higher levels of correlation of data as the H value increases. In other words, generated sequences have LRD properties. (Table 1) The numerical results of Anderson-Darling goodnessof-fit test for normality at the 5% significance level are presented by percentages (%). For each of H = 0.5, 0.55, 0.7, 0.9, 0.95, the method was used to generate over 100 sample sequences of 32,768(2 15) numbers starting from different random seeds. Each size of sample sequences is 32,768 numbers. | Method | Theoretical Hurst parameter | | | | | | |--------|-----------------------------|------|-----|-----|------|--| | CDA | 0.5 | 0.55 | 0.7 | 0.9 | 0.95 | | | SRA | 97 | 97 | 95 | 58 | 32 | | The estimates of Hurst parameter obtained from the periodogram, the R/S statistic, the variance-time and Whittle's MLE, have been used to analyse the accuracy of the generator. The relative inaccuracy ΔH is calculated using the formula: $\Delta H = \frac{\widehat{H} - H}{H} * 100\%$, where H is the input value and \widehat{H} is an empirical mean value. The presented numerical results are all averaged over 100 sequences. • The periodogram plots have slopes decreasing as H increases and also see (Fig. 3). The negative slopes of all our plots for H = 0.5, 0.55, 0.7, 0.9 and 0.95 were the (Fig. 4) R/S statistic plots for the SRA method for H = 0.55, 0.7, 0.9 and 0.95. (Fig. 5) Variance-time plots for the SRA method for H = 0.55, 0.7, 0.9 and 0.95. evidence of self-similarity. The relative inaccuracy ΔH of the estimated Hurst parameters of the method using periodogram plot is given in <Table 2>. We see that in the most cases parameter H of the SRA method was close to the required value, although the relative inaccuracy degrades with increasing H (but never exceeds 6%). The analysis of periodogram shows that the SRA method always produces self-similar sequences with negatively biased H. ⟨Table 2⟩ Relative inaccuracy △H estimated from periodogram plots. | Method | Theoretical Hurst parameter | | | | | | |----------|-----------------------------|--------|--------|--------|--------|--| | ivietnod | 0.5 | 0.55 | 0.7 | 0.9 | 0.95 | | | SRA | -0.09% | -1.41% | -3.78% | -5.13% | -5.31% | | • The plots of R/S statistic clearly confirmed self-similar nature of the generated sequences and also see (Fig. 4). The relative inaccuracy ΔH of the estimated Hurst parameter, obtained by R/S statistic plot, is given in <Table 3>. The method of analysis of H does not link this generator with persistently negative or positive bias of \widehat{H} , as the periodogram plots did. ⟨Table 3⟩ Relative inaccuracy ∆H estimated from R/S statistic plots. | | Method | Theoretical Hurst parameter | | | | | | |---|--------|-----------------------------|--------|--------|--------|--------|--| | | Method | 0.5 | 0.55 | 0.7 | 0.9 | 0.95 | | | Ī | SRA | +8.71% | +6.23% | +1.26% | -4.44% | -6.31% | | • The variance-time plots also supported the claim that generated sequences were self-similar and also see (Fig. 5). < Table 4> gives the relative inaccuracy ΔH of the estimated Hurst parameters obtained by the variance-time plot. Again, the method shows quality of the output sequences in the sense of H, with the relative inaccuracy increasing with the increase in H, but remaining below 8%. This time, the results suggest that the output sequences are negatively biased \widehat{H} . ⟨Table 4⟩ Relative inaccuracy ⊿H estimated from variance-time plots. | Met | Mathad | Theoretical Hurst parameter | | | | | | |-----|--------|-----------------------------|--------|--------|--------|--------|--| | | Wethod | 0.5 | 0.55 | 0.7 | 0.9 | 0.95 | | | | SRA | -2.76% | -2.97% | -3.38% | -6.00% | -7.47% | | • The results for Whittle estimator of H with the corresponding 95% CIs $\widehat{H}_{\pm 1.96}$ $\widehat{\sigma}_{\widehat{H}}$ see <Table 5>, show that for all input H values, the SRA method produce sequences with negatively biased (except H = 0.5). ⟨Table 5⟩ Estimated mean values of H using Whittle's MLE. Each CI is for over 100 sample sequences. 95% CIs for the means are given in parentheses. | | Method | Theoretical Hurst parameter | | | | | | |--|--------|-----------------------------|--------------|--------------|--------------|--------------|--| | | Method | 0.5 | 0.55 | 0.7 | 0.9 | 0.95 | | | | SRA | .500 | .538 | .656 | .825 | .869 | | | | SKA | (.490, .510) | (.528, .547) | (.647, .666) | (.816, .834) | (.860, .878) | | Our results show that the generator produces approx- imately self-similar sequences, with the relative inaccuracy ΔH increasing with the increase of H, but always staying below 9%. Apparently there is a problem with more detailed studies of such a generator, since different methods of analysis of the Hurst parameter can give very different results regarding the bias of \hat{H} characterising the same output sequences. More reliable methods for assessment of self-similarity in pseudo-random sequences are needed. #### 4.2 Computational Complexity The results of our experimental analysis of mean times needed by the generator for generating pseudo-random self-similar sequences of a given length are shown in <Table 6>. The main conclusion is listed below. (Table 6) Complexity and mean running times of generators. Running times were obtained by using the SunOS 5,5 date command on a Sun SPARCstation 4 (110 MHz, 32 MB); each mean is averaged over 30 iterations. | Method | Complexity | Sequence of | | | | | | |--------|------------|-----------------------------------|---------|---------|---------|-----------|--| | | | 32,768 | 131,072 | 262,144 | 524,288 | 1,048,576 | | | | | Numbers | Numbers | Numbers | Numbers | Numbers | | | | | Mean running time (minute:second) | | | | | | | SRA | O(n) | 0:3 | 0:10 | 0:20 | 0:40 | 1:31 | | • The SRA method is fast. < Table 6> shows its time complexity and the mean running time. It took 3 seconds to generate a sequence of 32,768 (2 15) numbers, while generation of a sequence with 1,048,576 (220) numbers took 1 minute and 31 seconds. The theoretical algorithmic complexity is O(n) [20]. In summary, our results show that a generator of pseudo-random self-similar sequences based on SRA is fast in practical applications, when long self-similar sequences of numbers are needed. #### 5. Conclusions In this paper we have presented the results of a generator, based on the SRA algorithm, of (long) pseudo-random self-similar sequences. It appears that this method generates approximately self-similar sequences, with the relative inaccuracy of the resulted H below 9%, if $0.5 \le H \le 0.95$. On the other hand, the analysis of mean times needed for generating sequences of given lengths shows that this generator should be recommended for practical simulation of computer networks, since it is very fast. Our study has also revealed that a more robust method for analysis of self-similarity in pseudo-random sequences is needed. This is the direction of our current research. #### References - [1] J. Beran, "Statistical Methods for Data with Long Range Dependence," Statistical Science, Vol.7(4), pp.404-427, 1992. - [2] J. Beran, "Statistics for Long-Memory Processes," Chapman and Hall. New York, 1994. - [3] M. C. Cario and B. L. Nelson, "Numerical Methods for Fitting and Simulating Autoregressive-to-Anything Processes," INFORMS Journal on Computing, Vol.10(1), pp.72-81, 1998. - [4] D. R. Cox, "Long-Range Dependence: a Review," Statistics: An Appraisa, Iowa State Statistical Library, The Iowa State University Press, H.A. David and H.T. David (eds.), pp.55-74, 1984. - [5] A. J. Crilly, R.A. Earnshaw and H. Jones, "Fractals and Chaos," Springer-Verlag, New York, 1991. - [6] M. W. Garrett and W. Willinger, "Analysis, Modeling and Generation of Self-Similar VBR Video Traffic," Computer Communication Review, Proceedings of ACM SIGCOMM'94, London, UK, Vol.24(4), pp.269-280, 1994. - [7] J. D. Gibbons and S. Chakraborti, "Nonparametric Statistical Inference," Marcel Dekker, Inc., New York, 1992. - [8] C. W. J. Granger, "Long Memory Relationships and the Aggregation of Dynamic Models," Journal of Econometrics, Vol.14, North-Holland Publishing Company, pp.227-238, 1980. - [9] J. R. M. Hosking, "Modeling Persistence in Hydrological Time Series Using Fractional Differencing," Water Resources Research, Vol.20(12), pp.1898-1908, 1984. - [10] M. Krunz and A. Makowski, "A Source Model for VBR Video Traffic Based on $M/G/\infty$ Input Processes," Proceedings of IEEE INFOCOM'98, San Francisco, CA, USA, pp.1441-1448, 1998. - [11] W-C. Lau, A. Erramilli, J. L. Wang and W. Willinger, "Self-Similar Traffic Generation: the Random Midpoint Displacement Algorithm and its Properties," Proceedings of IEEE International Conference on Communications (ICC'95), Seattle, WA, pp.466-472, 1995. - [12] W. E. Leland, M. S. Taggu, W. Willinger and D. V. Wilson, "On the Self-Similar Nature of Ethernet Traffic (Extended Version)," IEEE ACM Transactions on Networking, Vol.2(1), pp.1-15, 1994. - [13] N. Likhanov, B. Tsybakov and N.D. Georganas, "Analysis of an ATM Buffer with Self-Similar ("Fractal") Input Traffic," Proceedings of IEEE INFOCOM'95, Boston, Massachusetts, pp.985-992, 1995. - [14] B. B. Mandelbrot, "A Fast Fractional Gaussian Noise Generator," Water Resources Research, Vol.7, pp.543-553, 1971. - [15] B.B. Mandelbrot and J. R. Wallis, "Computer Experiments with Fractional Gaussian Noises," Water Resources Research, Vol.5(1), pp.228-267, 1969. - [16] A. L. Neidhardt and J. L. Wang, "The Concept of Relevant Time Scales and its Application to Queueing Analysis of Self-Similar Traffic (or Is Hurst Naughty or Nice?)," Performance Evaluation Review, Proceedings of ACM SIGMETRICS'98, Madison, Wisconsin, USA, pp.222-232, 1998. - [17] I. Norros, "A Storage Model with Self-Similar Input," Queueing Systems, Vol.16, pp.387-396, 1994. - [18] V. Paxson, "Fast Approximation of Self-Similar Network Traffic," Lawrence Berkeley Laboratory and EECS Division, University of California, Berkeley (No.LBL-36750), 1995. - [19] V. Paxson and S. Floyd, "Wide-Area Traffic: the Failure of Poisson Modeling," Computer Communication Review, Proceedings of ACM SIGCOMM'94, London, UK, pp.257– 268, 1994. - [20] H.-O. Peitgen and D. Saupe, "The Science of Fractal Images," Springer-Verlag, New York, 1988. - [21] O. Rose, "Traffic Modeling of Variable Bit Rate MPEG Video and Its Impacts on ATM Networks," PhD thesis, Bayerische Julius-Maximilians-Universitat Wurzburg, 1997. - [22] B. K. Ryu, "Fractal Network Traffic: from Understanding to Implications," PhD thesis, Graduate School of Arts and Sciences, Columbia University, 1996. - [23] T. Taralp, M. Devetsikiotis, I. Lambadaris and A. Bose, "Efficient Fractional Gaussian Noise Generation Using the Spatial Renewal Process," *Proceedings of IEEE International Conference on Communications (ICC'98)*, Atlanta, GA, USA, pp.7–11, 1998. #### Appendix A: C Code for SRA Algorithm ``` * data: real array of size 2 max level + 1 * H: Hurst parameter (0 < H < 1) * maxlevel: maximum number of recursions * M: mean * V: variance ******************* void SRA-FBM(double *data, double H, int maxlevel, double M, double V) { /*************** * i,j,d,dhalf,n,level: integers * std: initial standard deviation * Delta[]: array holding standard deviations * gennor(M,V): normally distributed RNs using uniformly distributed RNs ***************** ``` int i,j,d,dhalf,n,level; ``` double Delta[maxlevel]; std=sart(1.0-pow(2.0.(2*H-2))); for(i=0; i<maxlevel; i++) Delta[i]=std*pow(0.5,(i*H))*sqrt(0.5)*sqrt(1.0-pow(2.0,(2*H-2))); n=pow(2,maxlevel); data[0]=0.0; data[n]=std*gennor(M,V); d=n: dhalf=d/2; level=1; while(level<maxlevel) { for(i=dhalf; i<=(n-dhalf); i+=d) data[i]=0.5*(data[i-dhalf]+data[i+dhalf]); for(j=0; j \le n; j+= dhalf) data[j]=data[j]+Delta[level]*gennor(M,V); d=d/2; dhalf=dhalf/2; level=level+1; } /* end while */ } /* end SRA-FBM */ ``` #### 정 해 덕 e-mail: joshua@bible.ac.kr double std; 2002년 Dept. of Computer Science, Univer- sity of Canterbury, NZ. 컴퓨터과학 박사 2004년~현재 한국성서대학교 정보과학부 교수 2004년 Sarona Community Trust, NZ, 개별지도교수 2003년~2004년 Quality Education Support Service in NZ Ltd., NZ, 연구부장 1999년~2003년 Univ. of Canterbury, NZ, 연구원 1997년 Third Wave Media Ltd., NZ, 미디어 통계분석가 관심분야: teletraffic modeling & analysis in telecommunication networks and stochastic simulation ### 이 종 숙 e-mail: jsruthlee@kisti.re.kr 2001년 Dept. of Computer Science, University of Canterbury, NZ, 컴퓨터과 학 박사 2002년~현재 한국과학기술정보연구원 그리 드연구실, 선임연구원 2005년~현재 한국기술연합대학원대학교 (UST) 교수 1999년~2002년 Univ. of Canterbury, NZ, 연구원 1992년~1993년 한국전자통신연구원, 연구원 관심분야: 그리드 컴퓨팅, 그리드 미들웨어, 병렬/분산 컴퓨팅, 분산/병렬 시뮬레이션