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Algorithmic Generation of Self-Similar
Network Traffic Based on SRA

HaeDuck J. Jeong" - JongSuk R. Lee™

ABSTRACT

It is generally accepted that self-similar (or fractal) processes may provide better models for teletraffic in modern computer networks
than Poisson processes. If this is not taken into account, it can lead to inaccurate conclusions about performance of computer networks.
Thus, an important requirement for conducting simulation studies of telecommunication networks is the ability to generate long synthetic
stochastic self-similar sequences. A generator of pseudo-random self- similar sequences, based on the SRA (successive random addition)
method, is implemented and analysed in this paper. Properties of this generator were experimentally studied in the sense of its
statistical accuracy and the time required to produce sequences of a given (long) length, This generator shows acceptable level of
accuracy of the output data {in the sense of relative accuracy of the Hurst parameter) and is fast. The theoretical algorithmic
complexity is O(n).

FI1Q/E : Self-similar TEMHA(Self-similar Process), Self-similar sequence MAJ|(Self-similar Sequence Generator), Hurst
(Hurst Parameter), Teletraffic, & WYEA(Telecommunication Network)
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1. Infroduction

The search for accurate mathematical models of data
streams in modern computer networks has attracted a
considerable amount of interest in the last few years. The
reason is that several recent teletraffic studies of local and
wide area networks, including the world wide web, have

% The authors thank anonymous referees for their valuable comments.
This work was partially supported by the Korean Bible University's
Research Grant.
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shown that commonly used teletraffic models, based on
Poisson or related processes, are not able to capture the
self-similar (or fractal) nature of teletraffic (121, [13], [19],
[22], especially when they are engaged in such sophisti-
cated services as variable-bit-rate (VBR) video trans-
mission [6], [10], [21]. The properties of teletraffic in such
scenarios are very different from both the properties of
conventional models of telephone traffic and the traditional
models of data traffic generated by computers.

The use of traditional models of teletraffic can result in
overly optimistic estimates of performance of computer
networks, insufficient allocation of communication and data
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processing resources, and difficulties in ensuring the qual-
ity of service expected by network users [1], [16], [19]. On
the other hand, if the strongly correlated character of tele-
traffic is explicitly taken into account, this can also lead to
more efficient traffic control mechanisms.

Several methods for generating pseudo-random self-
similar sequences have been proposed. They include meth-
ods based on fast fractional Gaussian noise [14], fractional
ARIMA processes [9], the M/G/o queue model [10], [12],
autoregressive processes [3], [8], spatial renewal processes
[23], etc. Some of them generate asymptotically self-similar
sequences and require large amounts of CPU time. For
example, Hosking’s method [9], based on the F-ARIMA(0,
d, 0) process, needs many hours to produce a self-similar
sequence with 131,072 (2") numbers on a Sun SPARC
station 4 [12). It requires O(n®) computations to generate n
numbers. Even though exact methods of generation of
self-similar sequences exist (for example: [14]), they are
only fast enough for short sequences. They are usually in-
appropriate for generating long sequences because they re-
quire multiple passes along generated sequences. To over-
come this, approximate methods for generation of self-sim-
ilar sequences in simulation studies of computer networks
have been also proposed [11], [18].

Qur evaluation of the method proposed for generating
self-similar sequences concentrates on two aspects: ()
how accurately a self-similar process can be generated,
and (i) how fast the method generates long self-similar
sequences. We consider our implementation of a method
based on the successive random addition (SRA) algorithm,
proposed by Saupe, D. [5].

Summary of the basic properties of self-similar proc-
esses is given in Section 2. In Section 3 a generator of
pseudo-random self-similar sequences based on SRA is
described. Numerical results of analysis of sequences gen-—
erated by this generator are discussed in Section 4.

2. Self-Similar Processes and Their Properties

Basic definitions of self-similar processes are as follows:
A continuous-time stochastic process {x,) is strongly
self-similar with a self-similarity parameter H(O < H ¢ 1),
known as the Hurst parameter, if for any positive stretching
factor (, the rescaled process with time scale ¢, cx, is
equal in distribution to the original process {(x ; [2]. This
means that, for any sequence of time points ¢,,¢,,,¢,
and for all ¢> 0, {c¥X 4.c?X o, c?X .} has the
same distribution as {x,,X,,,X .}

In discrete-time case, let {(x,)={x,: #=0,1,2,~} be a
(discrete-time) stationary process With mean , , variance
o2 and autocorrelation function (ACF) (o}, for £=0,1,2, -,
and let {(x{”)5.,= X{,x{. ) m=123,~, be a
sequence of batch means, ie, X{=(X e meit o+ X o)
/m, k= 1.

The process {x ,} with p, — 2% as £ — oo, 0<A<L IS
called exactly self-similar with H=1-(8/2), if o{™=op
for any m=1,2,3,. In other words, the process {x,}
and the averaged processes {x{™), m=1, have identical
correlation structure. The process {x,} is asymptotically
self-similar with g=1-(g/2), if o{™ — py 8 m — co.

The most frequently studied models of self-similar traf-
fic belong either to the class of fractional autoregressive
integrated moving-average (F-ARIMA) processes or to the
class of fractional Gaussian noise processes; see [9], [12],
(18] F-ARIMA(p, d, ¢q) processes were introduced by
Hosking [9] who showed that they are asymptotically
self-similar with Hurst parameter H=4+0.5, as long as
0<d<o0.5 In addtion, the incremental process
(Y ={X,— X ,_1}, k= 0, is called the fractional Gaussion
noise (FGN) process, where (x,} designates a fractional
Brownian motion(FBM) random process. This process is a
(discrete-time) stationary Gaussian process with mean ., var-
iance 42 and (o= {%(mn 2H_olH 2 4 |k— 1| 2}, k0.
An FBM process, which is the sum of FGN increments, is
characterized by three properties [15]: () it is a continuous

zero-mean (aussian process {X}={X,: s = 0 and 0 ¢

H ¢ 1) with ACF given by psv,=_%‘(szH+t2H—] s—¢ %)

where s is time lag and t is time; (i) its increments
(X,—X,.,) form a stationary random process; (iii) it is
self-similar with Hurst parameter H, that is, for all ¢ > o,
{X ,}={c"x}, in the sense that, if time is changed by
the ratio ¢, then {x is changed by %

Main properties of self-similar processes include ([2],
[4], [12D):

» Slowly decaying variance: The variance of the sample mean
decreases more slowly than the reciprocal of the non-over—
lapping batch size m, that is, VaAd{X{™}] — ¢, ~* as
m — o, Where ¢, is a constant and ¢ < g, < 1.

® Long-range dependence: A process {x,} is called a
stationary process with long-range dependence (LRD)
if its ACF {p,} is non-summable, that is, g"opﬁw.

The speed of decay of autocorrelations is more like hy-
perbolic than exponential,



¢ Hurst effect: Self-similarity manifests itself by a straight
line of slope g, on a log-log plot of the /s statistic. For
a given sequence of random variables (X, ,X,, -, X .}
one can consider the so-called rescaled adjusted range

B(Lm) (or R/S-statistic), with
S(¢, m)

Rtm= " [Y, — ¥, - (¥, ,— V) 0<ism]-
T LY i ¥ (Ve g Y0, 0<iS m], Where

1 <¢t<n mis the batch size and y,= Z']]X,-; and

S(t’m)__—\/mil';inl(xi_ 7(t.m)zn where —)Et,m':m-l

t+m

X Hurst found empincally that for many time series
observed in nature, the expected value of Jg%—%— asymptoti-

cally satisfies the power-law relation: E[%] — cym®,

as m — oo With 0.5 < 7 ¢ 1, where , is a finite positive
constant [2].
In simulation of computer networks, given a sequence of

the approximate FBM process {x,, we can obtain a
self-similar cumulative arrival process {y, [11], [17)
(Y y=Mt+VAM{X )}, t=(—o,+o) where M is the
mean input rate and A is the peakedness factor, defined as
the ratio of variance to the mean, M > 0, A > 0. The
Gaussian incremental process {7, } from time ¢ to time

t+11s given as' (V= M+VAM [{X 410 — (X ).

3. A Generator of Self-Similar Sequences Based on SRA

We suggest that the SRA-based method is as being suf-
ficiently fast for practical applications in generation of sim-—
ulation input data. In this paper, we report properties of the
successive random addition (SRA), one of recently proposed
alternative methods for generating pseudo-random self~-sim-
tlar sequences. The C code of our implementation of the
SRA algorithm is in Appendix A. This method can be
characterized as follows by a diagram shown in (Fig. 1)

1
' » Interpolate Add offsets e A selfsimilar
oh‘l_’ I\ midpoints to all points Nomnalisation ’seqmme

Uniformly disributal Gaussian rndom
random numbers mmbers

(Fig. 1) The SRA method

The SRA method uses the midpoints like Random
Midpoint Displacement (EMD) algorithm (for more de-
tailed discussions, see [5]), but adds a displacement of a
suitable variance to all of the points to increase stability of
the generated sequence. The reason for interpolating mid-
points is to construct Gaussian increments of X, which are
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correlated. Adding offsets to all points should make the
resulted sequence self-similar and of normal distribution
[20]. The SRA method consists of the following steps:

Step.1 If the process {x) is to be computed for times in-
stances ¢ between 0 and 1, then start out by setting
X,=0 and selecting x, as a pseudo-random num-
ber from a Gaussian distribution with mean 0 and
variance Var X,]= 6% Then vadx,- X,1= %

Step.2 Next, x ,,, is constructed by the interpolation of

the midpoint, that is, X ,,= -ZL(X0+X1)-

Step.3 Add a displacement of a variance (see the below
5% how it is achieved) to all of the points, ie,
Xo=Xp+dy,, X =X +d,, X1=X,+td;.

2 2

The offsets 4,, are govemed by fractional Gau-
ssian noise. For VadX ,— X, 1=|t,—t,] 6% t0 be
true, forany ¢ 4, 0 < 4, < ¢ < 1, it is reuired that

VarlX = Xol = Varl X~ Xl 4281 = () ot
that iS, S? :—ZL(—Z-IT) 2H(1_2 2H_2)0‘%-

Step.4 Next, Step.2 and Step.3 are repeated until the re-
quired numbers n of a sequence are reached

Therefore, Sa:—é—(—an-)ZH(l—ZZH_Z)o'%, where 43

is an initial variance and 0 < H < 1.

Using the above steps, the SRA method generates an
approximate self-similar FBM process.

4. Analysis of Self-Similar Sequences

The generator of self-similar sequences of pseudo-ran-
dom numbers described in the Section 3 has been im-
plemented in C on a Sun SPARCstation 4 (110 MHz, 32
MB), and used to generate self-similar cumulative arrival
processes, mentioned at the end of Section 2. The mean
times required for generating sequences of a given length
were obtained by using the SunOS 55 date command and
averaged over 30 iterations, having generated sequences of
32,768 (921), 131,072 (217), 262144 (2 1), 524,288 (2 19) and
1,048576 (2 %) numbers.

We have also analysed the efficiency of the method in
the sense of its accuracy. For each of H = 0.5 055, 07,
0.9, 0.95, the method was used to generate over 100 sample
sequences of 32,768 (215) numbers starting from different
random seeds. Self-similarity and marginal distributions of
the generated sequences were assessed by applying the
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Sequence plot for SRA method (H - 0.35)
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(Fig. 2) Sequence plots for the SRA method for H = 055, 0.7, 0.9 and 0.95.

Periodogram plot for SR4 method (H  0.55)

Periodogram plot for SR4 method (H = 0.7)
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(Fig. 3) Periodogram plots for the SRA method for H = 055, 0.7, 0.9 and 0.95.

best currently available techniques. These include:

® Anderson-Darling goodness—of-fit test. used to show
that the marginal distribution of sample sequences gen-
erated by the method is, as required, normal (or almost
normal). This test is more powerful than Kolmogorov-
Smirnov when testing against a specified normal dis—

tribution [7].

o Sequence plot: used to show that a generated sequence
has LRD properties with the assumed H value.

® Periodogram plot: used to show whether a generated
sequence is LRD or not. It can be shown that if the
autocorrelations were summable, then near the origin the
periodogram should be scattered randomly around a



constant. If the autocorrelations were non-summable, ie.,
LRD, the points of a sequence are scattered around a
negative slope. The periodogram plot is obtained by
plotting log ,, (periodogram) against log ,, (frequency).
An estimate of the Hurst parameter is given by
B=(1— gy)/2 where g, is the slope [21.

®R/S statistic plot: graphical R/S analysis of empirical
data can be used to estimate the Hurst parameter H.
An estimate of H is given by the asymptotic slope g,
of the R/S statistic plot, ie, F= 3, [2].

is obtained by plotting 1og
(Var(x ‘™))against 1og ,(m) and by fitting a simple
least square line through the resulting points in the
plane. An estimate of the Hurst parameter is given by
H=1-p,/2 where p, is the slope [2].

e Whittle’s approximate madinum likelihood estimate( MLE):
is a more refined data analysis method to obtain con—
fidence intervals (Cls) for the Hurst parameter H [2).

e Variance-time plot:

4.1 Analysis of Accuracy
We have summarised the results of our analysis in the

following:

¢ Anderson-Darling goodness-of-fit test was applied to
test normality of sample sequences. The results of the
tests, executed at the 5% significance level, showed that
for H = 05, 055, 0.7, the generated sequences are nor—
mally distributed, but for H = 0.9, 0.9, they with the

R’S statistic plot for SRA method (H  0.55)
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high value of H are weaker normally distributed than
the former ones with the low value of H;
<Table 1>.

¢ Sequence plots in (Fig. 2) show higher levels of correla-
tion of data as the H value increases. In other words,
generated sequences have LRD properties.

see also

{Table 1) The numerical results of Anderson-Darting goodness-
of-fit test for normality at the 5% significance level
are presented by percentages (%). For each of H
= 05, 055 0.7, 0.9, 0.95 the method was used to
generate over 100 sample sequences of 32,768( 2 15)
numbers starting from different random seeds. Each
size of sample sequences is 32,768 numbers.

Method Theoretical Hurst parameter
05 0.55 0.7 09 0.95
SRA 97 97 95 8 32

The estimates of Hurst parameter obtained from the pe-
riodogram, the R/S statistic, the variance-time and Whittle's
MLE, have been used to analyse the accuracy of the
generator. The relative inaccuracy 4 is calculated using

.

the formula: AH:—ﬁLI;ﬂ*mo%, where H is the input

value and 7 is an empirical mean value. The presented
numerical results are all averaged over 100 sequences.

¢ The periodogram plots have slopes decreasing as H in-

creases and also see (Fig. 3). The negative slopes of all
our plots for H = 05, 055, 0.7, 0.9 and 0.95 were the

RS statistic plot for SR4 method (H - 0.7)
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(Fig, 4) R/S statistic plots for the SRA method for H = 055, 0.7, 0.9 and 0.95.
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Vartance hme plot for SR method (H - 0.55)
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(Fig. 5) Variance-time plots for the SRA

evidence of self-similarity. The relative inaccuracy am

of the estimated Hurst parameters of the method using

periodogram plot is given in <Table 2>. We see that in

the most cases parameter H of the SRA method was
close to the required value, although the relative in-
accuracy degrades with increasing H (but never exceeds

6%). The analysis of periodogram shows that the SRA

method always produces self-similar sequences with
negatively biased 7.

{Table 2> Relative inaccuracy 4z estimated from periodogram
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method for H = 0.55, 0.7, 0.9 and 0.95.

® The vanance-time plots also supported the claim that
generated sequences were self-similar and also see (Fig.
5). <Table 4> gives the relative inaccuracy 4x of the
estimated Hurst parameters obtained by the var-
iance-time plot. Again, the method shows quality of the
output sequences in the sense of H, with the relative
inaccuracy increasing with the increase in H, but re-
maining below 8%. This time, the results suggest that
the output sequences are negatively biased 7.

(Table 4> Relative inaccuracy 4z estimated from

plots. variance-time plots.
Theoretical Hurst parameter Theoretical Hurst parameter
Method 05 055 07 09 095 Method 05 05 07 09 0.9
SRA -009% | -141% | -378% | -513% | -531% SRA -276% | -297% | -338% | -6.00% | -747%

o The plots of R/S statistic clearly confirmed self-similar
nature of the generated sequences and also see (Fig. 4).
The relative inaccuracy 4g of the estimated Hurst pa-
rameter, obtained by R/S statistic plot, is given in
<Table 3>. The method of analysis of H does not link
this generator with persistently negative or positive bias
of &, as the periodogram plots did.

Lo . . Theoretical Hurst parameter
(Table 3 Rle(:?Stwe inaccuracy 4 estimated from R/S statistic Method 0 0% o7 09 3
pIOtS. : SRA | o0 538 656 85 869
Method Theoretical Hurst parameter (490, 510) | (528, 547) | (647, 666) | (816, .834) | (.860, .878)

® The results for Whittle estimator of H with the corre-
sponding 95% CIs F:1.96 54, see <Table 5>, show
that for all input H values, the SRA method produce
sequences with negatively biased (except H = 0.5).

(Table 5) Estimated mean values of H using Whittle's MLE.
Each Cl is for over 100 sample sequences. 95% Cls
for the means are given in parentheses.

05 0.55 07 09 0.9%
SRA +8.71% +6.23% +1.26% -444% | -6.31%

Our results show that the generator produces approx-—



imately self-similar sequences, with the relative inaccuracy
AH increasing with the increase of H, but always staying
below 9%. Apparently there is a problem with more de-
tailed studies of such a generator, since different methods
of analysis of the Hurst parameter can give very different
results regarding the bias of “F characterising the same
output sequences. More reliable methods for assessment of
self~similarity in pseudo-random sequences are needed.

4.2 Computational Complexity

The results of our experimental analysis of mean times
needed by the generator for generating pseudo-random
self~similar sequences of a given length are shown in
<Table 6>. The main conclusion is listed below.

{Table 6) Complexity and mean running times of generators.
Running times were obtained by using the SunOS
5.5 date command on a Sun SPARCstation 4 (110
MHz, 32 MB): each mean is averaged over 30
iterations.

Sequence of

32,768 | 131,072 | 262,144 | 524,283 | 1,048,576
Numbers | Numbers | Numbers | Numbers | Numbers

Method | Complexity

Mean running time (minute:second)

SRA | Om 03 | 010 | 020 | 040 ] 131

¢ The SRA method is fast. <Table 6> shows its time
complexity and the mean running time. It took 3 sec-
onds to generate a sequence of 32,768 (215) numbers,
while generation of a sequence with 1,048576 (g %)
numbers took 1 minute and 31 seconds. The theoretical
algorithmic complexity is O(n) [20].

In summary, our results show that a generator of pseu—
do-random self-similar sequences based on SRA is fast in
practical applications, when long self-similar sequences of
numbers are needed.

5. Conclusions

In this paper we have presented the results of a gen—
erator, based on the SRA algorithm, of (long) pseudo-ran-
dom self-similar sequences. It appears that this method
generates approximately self-similar sequences, with the
relative inaccuracy of the resulted H below 9%, if
0.5 < H < 0.95. On the other hand, the analysis of mean
times needed for generating sequences of given lengths
shows that this generator should be recommended for
practical simulation of computer networks, since it is very
fast. Our study has also revealed that a more robust
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method for analysis of self-similarity in pseudo-random
sequences is needed. This is the direction of our current
research.
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Appendix A: G Code for SRA Algorithm

/ o
* data: real array of size 9 mexkwel + ]
* H: Hurst parameter (0 < H < 1)
* maxlevel: maximum number of recursions
* M: mean
* V: variance

I %/

void SRA-FBM(double *data, double H, int maxlevel, double
M, double V)

{
/

* 1),d,dhalfnlevel: integers

* std: initial standard deviation

* Delta[): array holding standard deviations

* gennor(M,V): normally distributed RNs using uniformly
distributed RNs

=%
int 1,),d,dhalf n level;

double std;
double Deltalmaxlevell;

std=sqrt(1.0-pow(2.0,(2«H-2)));
for(i=0; i<maxlevel; i++)
Deltali]=std*pow(0.5,(i*H))*sqrt(0.5)*sqrt(1.0-pow(2.0,(2¢H-2)));
n=pow(2,maxlevel);
datal0]=0.0;
dataln]=std*gennor(M,V);
d=n;
dhalf=d/2,
level=1;
while(level <maxlevel) {
for(i=dhalf; i<=(n-dhalf); i+=d)
datali]=0.5+(datali-dhalf]+datali+dhalf]);
for(G=0; j<= n; j*+= dhalf)
dataljl=datalj]+Deltallevell*gennor(M,V);
d=d/2;
dhalf=dhalf/2;
level=level+1;
} /* end while */

} /* end SRA-FBM */
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