• 제목/요약/키워드: proteomic techniques

검색결과 24건 처리시간 0.023초

Comparison of Protein Profiles of Proso Millet (Panicum miliaceum) Seeds of Various Korean Cultivars

  • Roy, Swapan Kumar;Kwon, Soo-Jeong;Yu, Je-Hyeok;Sarker, Kabita;Cho, Seong-Woo;Moon, Young-Ja;Jung, Tae-Wook;Park, Cheol-Ho;Woo, Sun-Hee
    • 한국작물학회지
    • /
    • 제62권1호
    • /
    • pp.40-50
    • /
    • 2017
  • Seed storage proteins are used as carbon and nitrogen sources for the nutritional improvement of seeds. Since the composition of proteins from the Korean cultivars of proso millet is unknown, this study was conducted to obtain a reference map of millet seed proteins and identify the functional characteristics of the identified proteins. Proteins extracted from proso millet seeds of various cultivars were investigated using proteomic techniques such as 2-D electrophoresis coupled with mass fingerprinting; 1152 (differentially expressed) protein spots were detected on the 2-D gels. Among them, 26 reproducible protein spots were analyzed using matrix-assisted laser desorption/ionization time-of-flight/time-of-flight mass spectrometry. Out of the 26 proteins, 2 proteins were upregulated in all the millet cultivars, while 13 proteins were upregulated and 11 proteins were downregulated in 2 cultivars. Abundance of most of the identified protein species associated with polysaccharide and starch metabolism, transcription, and pathogenesis was significantly enhanced, while that of other protein species involved in glycolysis, stress response, and transduction was severely reduced. Taken together, the results suggest that the differential expression of the proteins from the four millet cultivars may be cultivar-specific. By conducting a proteomic investigation of millet seeds from different cultivars, we sought to better understand the functional categorization of individual proteins on the basis of their molecular functions. We believe that the identified proteins may help in investigating genetic variations in millet cultivars.

Comparative proteome analysis of seeds of proso millet (Panicum miliaceum) cultivars

  • Roy, Swapan Kumar;Kwon, Soo Jeong;Park, Hyeong-Jun;Yu, Je-Hyeok;Sarker, Kabita;Cho, Seong-Woo;Jung, Tae-Wook;Park, Cheol-Ho;Woo, Sun-Hee
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.120-120
    • /
    • 2017
  • Since the composition of proteins from the Korean cultivars of Proso millet is unknown; thereby, the present study was conducted to obtain a reference map of millet seed proteins and identify the functional characteristics of the identified proteins. Proteins extracted from the millet seeds of various cultivars, were investigated using proteomic techniques as 2D electrophoresis coupled with mass fingerprinting. The 1152 (differentially expressed) proteins were detected on 2-D gel. Among them, 26 reproducible protein spots were analyzed by MALDI-TOF-TOF mass spectrometry. Out of 26 proteins, 2 proteins were up-regulated towards all cultivars of millet, while 7 proteins were up-regulated and 13 proteins were down-regulated against only one cultivar. However, abundance in most identified protein species, associated with metabolism, transcription and transcription was significantly enhanced, while that of another protein species involved in polysaccharide metabolism, stress response and pathogenesis were severely reduced. Taken together, the results observed from the study suggest that the differential expression of proteins from the four cultivars of millet may be cultivar-specific. Taken together, a proteomic investigation of millet seeds from different cultivars, we sought to better understand the genetic variation of millet cultivars representing the future millet research, and the functional categorization of individual proteins on the basis of their molecular function.

  • PDF

Recent Advances of MALDI-Mass Spectrometry Imaging in Cancer Research

  • Jung, Joohee
    • Mass Spectrometry Letters
    • /
    • 제10권3호
    • /
    • pp.71-78
    • /
    • 2019
  • For several decades, cancer has been the primary cause of mortality worldwide. New diagnosis and regimens have been developed to improve the chemotherapeutic efficacy and the quality of life of the patients. However, cancer tissues are complex and difficult to assess. Understanding the various properties of the tumor and its environment is crucial for cancer and pharmaceutical research. Several analytical techniques have been providing new insights into cancer research. Recently, matrix-assisted laser desorption ionization (MALDI)-mass spectrometry imaging (MSI), an advanced analytical technique, has been applied to translational research. Proteomic and lipidomic profiling obtained by MALDI-MSI has been critical for biomarker discovery and for monitoring heterogenous tumor tissues. In this review, we discuss technical approaches, benefits and recent applications of MALDI-MSI as a valuable tool in cancer research, namely for diagnosis, therapy, prognosis.

Application of Toxicogenomic Technology for the Improvement of Risk Assessment

  • Hwang, Myung-Sil;Yoon, Eun-Kyung;Kim, Ja-Young;Son, Bo-Kyung;Jang, Dong-Deuk;Yoo, Tae-Moo
    • Molecular & Cellular Toxicology
    • /
    • 제4권3호
    • /
    • pp.260-266
    • /
    • 2008
  • Recently, there has been scientific discussion on the utility of -omics techniques such as genomics, proteomics, and metabolomics within toxicological research and mechanism-based risk assessment. Toxicogenomics is a novel approach integrating the expression analysis of genes (genomic) or proteins (proteomic) with traditional toxicological methods. Since 1999, the toxicogenomic approach has been extensively applied for regulatory purposes in order to understand the potential toxic mechanisms that result from chemical compound exposures. Therefore, this article's purpose was to consider the utility of toxicogenomic profiles for improved risk assessment, explore the current limitations in applying toxicogenomics to regulation, and finally, to rationalize possible avenues to resolve some of the major challenges. Based on many recent works, the significant impact toxicogenomic techniques would have on human health risk assessment is better identification of toxicity pathways or mode-of-actions (MOAs). In addition, the application of toxicogenomics in risk assessment and regulation has proven to be cost effective in terms of screening unknown toxicants prior to more extensive and costly experimental evaluation. However, to maximize the utility of these techniques in regulation, researchers and regulators must resolve many parallel challenges with regard to data collection, integration, and interpretation. Furthermore, standard guidance has to be prepared for researchers and assessors on the scientifically appropriate use of toxicogenomic profiles in risk assessment. The National Institute of Toxicological Research (NITR) looks forward to an ongoing role as leader in addressing the challenges associated with the scientifically sound use of toxicogenomics data in risk assessment.

Proteomics in Rheumatoid Arthritis Research

  • Park, Yune-Jung;Chung, Min Kyung;Hwang, Daehee;Kim, Wan-Uk
    • IMMUNE NETWORK
    • /
    • 제15권4호
    • /
    • pp.177-185
    • /
    • 2015
  • Although rheumatoid arthritis (RA) is the most common chronic inflammatory autoimmune disease, diagnosis of RA is currently based on clinical manifestations, and there is no simple, practical assessment tool in the clinical field to assess disease activity and severity. Recently, there has been increasing interest in the discovery of new diagnostic RA biomarkers that can assist in evaluating disease activity, severity, and treatment response. Proteomics, the large-scale study of the proteome, has emerged as a powerful technique for protein identification and characterization. For the past 10 years, proteomic techniques have been applied to different biological samples (synovial tissue/fluid, blood, and urine) from RA patients and experimental animal models. In this review, we summarize the current state of the application of proteomics in RA and its importance in identifying biomarkers and treatment targets.

식물세포의 일주기성 단백질 (Photoperiodic Proteins in Plant Cells)

  • 황희연;부성희
    • Journal of Applied Biological Chemistry
    • /
    • 제53권3호
    • /
    • pp.121-125
    • /
    • 2010
  • 지난 10년간 분자 식물 일주기성에 대해 분자 생물학적, 생화학적인 연구가 많이 진행되었다. 본 연구에서는 식물의 Arabidopsis, rice 그리고 algae에서 지금까지 발표된 연구들을 종합하고 고찰해보려 했다. 그 결과, 아직까지도 주기성 대사의 모든 부분을 설명하기엔 부족한 부분이 많다는 것을 알수 있었다. 최근 주기성 단백질들의 전사후, 번역 그리고 번역후 변형과정에 대해 많은 연구자들이 관심을 갖기 시작했다. 이러한 부분에서 다량의 단백질을 한번에 볼 수 있는 2-DE gel electrophoresis와 MS/MS 기술이 절실히 요구된다고 할 수 있겠다.

Tumor-associated autoantibodies as diagnostic and prognostic biomarkers

  • Heo, Chang-Kyu;Bahk, Young Yil;Cho, Eun-Wie
    • BMB Reports
    • /
    • 제45권12호
    • /
    • pp.677-685
    • /
    • 2012
  • In the process of tumorigenesis, normal cells are remodeled to cancer cells and protein expression patterns are changed to those of tumor cells. A newly formed tumor microenvironment elicits the immune system and, as a result, a humoral immune response takes place. Although the tumor antigens are undetectable in sera at the early stage of tumorigenesis, the nature of an antibody amplification response to antigens makes tumor-associated autoantibodies as promising early biomarkers in cancer diagnosis. Moreover, the recent development of proteomic techniques that make neo-epitopes of tumor-associated autoantigens discovered concomitantly has opened a new area of 'immuno-proteomics', which presents tumor-associated autoantibody signatures and confers information to redefine the process of tumorigenesis. In this article, the strategies recently used to identify and validate serum autoantibodies are outlined and tumor-associated antigens suggested until now as diagnostic/prognostic biomarkers in various tumor types are reviewed. Also, the meaning of autoantibody signatures and their clinical utility in personalized medicine are discussed.

Proteomics를 이용한 등숙기 차이에 따른 콩 종실 저장단백질 발현양상 비교 분석 (Analysis of Protein Function and Comparison on Expression of Protein in Taekwang During Maturation using Proteomic Techniques)

  • 조성우;김태선;권수정;;이철원;김홍식;우선희
    • 한국작물학회지
    • /
    • 제60권1호
    • /
    • pp.41-46
    • /
    • 2015
  • 본 연구는 국내 육성 품종인 태광콩의 등숙기에 따른 단백질 발현 양상을 비교함으로써 등숙기 단백질 발현의 차이에 대한 기초자료를 얻고자 수행하였다. 동한 개화 후 종실의 등숙이 진행됨에 따라서 단백질 발현 양상이 세가지 경향으로 나뉘어 지는 것을 확인하였다. 첫 번째는 등숙이 진행됨에 따라서 단백질 발현 정도가 증가하다가 감소되며, 두 번째는 증가와 감소의 시기가 성숙기에 이루어지며, 세번째는 등숙기부터 성숙기까지 점진적으로 증가하는 것이다. 이러한 현상은 단백질의 기능에 따라 달라지는 것으로 사료된다. 등숙 초기에는 등숙에 필요한 단백질의 발현이 증가할 것이며 등숙 후기에는 저장단백질의 발현이 증가할 것으로 사료된다. 따라서 향후 좀 더 많은 수의 단백질 spot 들을 동정하여 어떤 기능을 가진 단백질이 등숙기에 따라 단백질의 발현 양상이 달라지는지는 좀 더 면밀히 관찰할 필요성이 있다고 사료된다.

탄저 치사독소 처리에 의한 생쥐 대식세포의 단백질체 발현 양상 분석 (Proteome Profiling of Murine Macrophages Treated with the Anthrax Lethal Toxin)

  • 정경화;서귀문;김성주;김지천;오선미;오광근;채영규
    • 미생물학회지
    • /
    • 제41권4호
    • /
    • pp.262-268
    • /
    • 2005
  • 탄저 치사독소는 생쥐 대식세포 (RAW 264.7)의 유전자 발현에 많은 변화를 초래한다. 이들 변화를 초래하는 치사독소의 역할은 아직 확실하게 밝혀지지 ???았다. 본 연구에서는, 치사독소가 처리된 생쥐 대식세포의 단백질 프로파일을 이차원 전기영동으로 분석하였고, MALDI-TOF 질량분석기를 사용하여 해당 단백질의 질량을 측정하였다. 펩타이드 질량 분석 데이터는 ProFound 데이터베이스를 이용하여 동정하였다. 차별화되어 발현된 단백질 중에서 절단된 mitogen-activated protein kinase kinase (Mek1)와 glucose-6-phosphate dehydrogenase (G6PD)가 치사독소 처리된 대식세포에서 각각 증가하였다. 치사독소를 처리하였을 경우, Mek1의 절단은 신호전달과정을 방해하고, 증가된 G6PD는 생성된 활성산소로부터 세포를 보호하는 역할을 하는 것으로 보인다. 단백질체 분석기술은 치사독소처리에 의한 생쥐 대식세포의 세포사멸 관련 단백질을 동정하는데 도움을 주어, 치사독소의 잠정적인 기질을 찾는데 유용할 것이다.

Protein Microarray의 응용 및 발전 전망 (Applications and Developmental Prospect of Protein Microarray Technology)

  • 오영희;한민규;김학성
    • KSBB Journal
    • /
    • 제22권6호
    • /
    • pp.393-400
    • /
    • 2007
  • 현재 많은 대학과 기업에서 다양한 방법으로 상용화가 가능한 protein microarray의 개발을 위해 많은 연구를 집중하고 있다. Protein microarray의 제작 및 분석 조건을 최적화하기 위한 연구도 진행되고 있지만 protein microarray로 부터 얻은 분석 결과를 모든 연구자들이 공유하고 통합하기 위한 노력이 절실한 실정이다. 뿐만 아니라, PCR 같은 무한 확장 방법이 존재하지 않는 단백질의 특성을 고려할 때, 좀 더 실용적인 protein microarray를 많이 만들기 위해서는 수많은 단백질들과 결합할 수 있는 특이성이 높고 결합력이 강한 capture molecule들을 개발하는 것이 필수이다. 그러나 이러한 장애에도 불구하고 protein microarray는 아주 적은 시료량으로 high-throughput assay가 가능하다는 장점 때문에 현재의 생명과학의 발전 추세로 볼 때 앞으로 protein microarray가 조만간 실용화될 것이며 이의 시장성은 매우 클 것으로 기대된다. 보다 빠른 실용화를 위해서는 protein microarray의 개발에 필요한 기반 기술의 개발과 동시에 이를 활용하기 위한 contents의 개발도 절실히 요구된다.