Browse > Article
http://dx.doi.org/10.7740/kjcs.2016.62.1.040

Comparison of Protein Profiles of Proso Millet (Panicum miliaceum) Seeds of Various Korean Cultivars  

Roy, Swapan Kumar (Department of Crop Science, Chungbuk National University)
Kwon, Soo-Jeong (Department of Crop Science, Chungbuk National University)
Yu, Je-Hyeok (Department of Crop Science, Chungbuk National University)
Sarker, Kabita (Department of Crop Science, Chungbuk National University)
Cho, Seong-Woo (Department of Crop Science and Biotechnology, Chonbuk National University)
Moon, Young-Ja (Department of Food Nutrition and Cookery, Woosong College)
Jung, Tae-Wook (Rural Development Administration)
Park, Cheol-Ho (College of Biomedical Science, Kangwon National University)
Woo, Sun-Hee (Department of Crop Science, Chungbuk National University)
Publication Information
KOREAN JOURNAL OF CROP SCIENCE / v.62, no.1, 2017 , pp. 40-50 More about this Journal
Abstract
Seed storage proteins are used as carbon and nitrogen sources for the nutritional improvement of seeds. Since the composition of proteins from the Korean cultivars of proso millet is unknown, this study was conducted to obtain a reference map of millet seed proteins and identify the functional characteristics of the identified proteins. Proteins extracted from proso millet seeds of various cultivars were investigated using proteomic techniques such as 2-D electrophoresis coupled with mass fingerprinting; 1152 (differentially expressed) protein spots were detected on the 2-D gels. Among them, 26 reproducible protein spots were analyzed using matrix-assisted laser desorption/ionization time-of-flight/time-of-flight mass spectrometry. Out of the 26 proteins, 2 proteins were upregulated in all the millet cultivars, while 13 proteins were upregulated and 11 proteins were downregulated in 2 cultivars. Abundance of most of the identified protein species associated with polysaccharide and starch metabolism, transcription, and pathogenesis was significantly enhanced, while that of other protein species involved in glycolysis, stress response, and transduction was severely reduced. Taken together, the results suggest that the differential expression of the proteins from the four millet cultivars may be cultivar-specific. By conducting a proteomic investigation of millet seeds from different cultivars, we sought to better understand the functional categorization of individual proteins on the basis of their molecular functions. We believe that the identified proteins may help in investigating genetic variations in millet cultivars.
Keywords
2-DE; proso millet; protein profiling; seed protein;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Saleh, A. S., Q. Zhang, J. Chen, and Q. Shen. 2013. Millet grains: Nutritional quality, processing, and potential health benefits. Compr. Rev. Food Sci. Food Saf. 12:281-295.   DOI
2 Sano, N., S. Masaki, T. Tanabata, T. Yamada, T. Hirasawa, and M. Kanekatsu. 2013. Proteomic analysis of stress-related proteins in rice seeds during the desiccation phase of grain filling. Plant Biotechnol. 30:147-156.   DOI
3 Schwender, J., F. Goffman, J. B. Ohlrogge, and Y. Shachar-Hill. 2004. Rubisco without the Calvin cycle improves the carbon efficiency of developing green seeds. Nature 432:779-782.   DOI
4 Skylas, D. J., L. Copeland, W. G. Rathmell, and C. W. Wrigley. 2001. The wheat-grain proteome as a basis for more efficient cultivar identification. Proteomics. 1:1542-1546.   DOI
5 Jha, B., N. P. Singh, and A. Mishra. 2012. Proteome profiling of seed storage proteins reveals the nutritional potential of Salicornia brachiata Roxb., an extreme halophyte. J. Agri. Food Chem. 60:4320-4326.   DOI
6 Kamal, A. H. M., I. D. Jang, D. E. Kim, T. Suzuki, K. Y. Chung, J. S. Choi, M. S. Lee, C. H. Park, S. U. Park, S. H. Lee, and H. S. Jeong. 2011. Proteomics analysis of embryo and endosperm from mature common buckwheat seeds. J. Plant Biol. 54:81-91.   DOI
7 Koo, S. C., D. W. Bae, J. S. Seo, K. M. Park, M. S. Choi, S. H. Kim, S. I. Shim, K. M. Kim, J. I. Chung, and M. C. Kim. 2011. Proteomic analysis of seed storage proteins in low allergenic soybean accession. J. Korean Soc. Appl. Biol. Chem. 54:332-339.   DOI
8 Kottapalli, K. R., P. Payton, R. Rakwal, G. K. Agrawal, J. Shibato, M. Burow, N. Puppala. 2008. Proteomics analysis of mature seed of four peanut cultivars using two-dimensional gel electrophoresis reveals distinct differential expression of storage, anti-nutritional, and allergenic proteins. Plant Sci. 175:321-329.   DOI
9 Li, W., Y. Gao, H. Xu, Y. Zhang, and J. Wang. 2012. A proteomic analysis of seed development in Brassica campestri L. PloS One. 7:e50290.   DOI
10 Macdonald, F. D. and J. Preiss. 1983. Solubilization of the starch-granule-bound starch synthase of normal maize kernels. Plant Physiol. 73:175-178.   DOI
11 Majoul, T., E. Bancel, E. Triboi, J. Ben Hamida, and G. Branlard. 2003. Proteomic analysis of the effect of heat stress on hexaploid wheat grain: Characterization of heat-responsive proteins from total endosperm. Proteomics. 3:175-183.   DOI
12 Mal, B., S. Padulosi, and S. B. Ravi. 2010. Minor millets in South Asia: learnings from IFAD-NUS Project in India and Nepal. Bioversity International, Maccarese, Rome, Italy and the MS Swaminathan Research Foundation, Chennai, India.
13 Veeranagamallaiah, G., G. Jyothsnakumari, M. Thippeswamy, P.C.O. Reddy, G.K. Surabhi, G. Sriranganayakulu, Y. Mahesh, B. Rajasekhar, C. Madhurarekha, and C. Sudhakar. 2008. Proteomic analysis of salt stress responses in foxtail millet (Setaria italica L. cv. Prasad) seedlings. Plant Sci. 175:631-641.   DOI
14 Smidansky, E. D., F. D. Meyer, B. Blakeslee, T. E. Weglarz, T. W. Greene, and M. J. Giroux. 2007. Expression of a modified ADP-glucose pyrophosphorylase large subunit in wheat seeds stimulates photosynthesis and carbon metabolism. Planta. 225:965-976.   DOI
15 Sun, W., M. Van Montagu, and N. Verbruggen. 2002. Small heat shock proteins and stress tolerance in plants. Biochimica et Biophysica Acta (BBA)-Gene Structure and Expression. 1577:1-9.   DOI
16 Torabi, S., M. Wissuwa, M. Heidari, M.R. Naghavi, K. Gilany, M.R. Hajirezaei, M. Omidi, B. Yazdi-Samadi, A. M. Ismail, and G.H. Salekdeh. 2009. A comparative proteome approach to decipher the mechanism of rice adaptation to phosphorous deficiency. Proteomics. 9:159-170.   DOI
17 O'Farrell, P. H. 1975. High resolution two-dimensional electrophoresis of proteins. J. Biol. Chem. 250:4007-4021.
18 Marcon, A. 1994. Wheat streak mosaic virus resistance in foxtail millet, Setaria italica, L Beauv., and factors related to resistance
19 Mesa-Stonestreet, D., N. Jhoe, S. Alavi, and S. R. Bean. 2010. Sorghum proteins: the concentration, isolation, modification, and food applications of kafirins. J. Food Sci. 75:R90-R104.   DOI
20 Nwugo, C. C. and A. J. Huerta. 2010. The effect of silicon on the leaf proteome of rice (Oryza sativa L.) plants under cadmium-stress. J. Proteome Res. 10:518-528.
21 Oge, L., G. Bourdais, J. Bove, B. Collet, B. Godin, F. Granier, J.-P. Boutin, D. Job, M. Jullien, and P. Grappin. 2008. Protein repair L-isoaspartyl methyltransferase1 is involved in both seed longevity and germination vigor in Arabidopsis. The Plant Cell. 20:3022-3037.   DOI
22 Pereira, M. A., E. O'Reilly, K. Augustsson, G.E. Fraser, U. Goldbourt, B.L. Heitmann, G. Hallmans, P. Knekt, S. Liu, P. Pietinen, and D. Spiegelman. 2004. Dietary fiber and risk of coronary heart disease: a pooled analysis of cohort studies. Archives of Internal Medicine. 164: 370-376.   DOI
23 Rajjou, L., K. Gallardo, I. Debeaujon, J. Vandekerckhove, C. Job, and D. Job. 2004. The effect of $\alpha$-amanitin on the Arabidopsis seed proteome highlights the distinct roles of stored and neosynthesized mRNAs during germination. Plant Physiol. 134:1598-1613.   DOI
24 Rajput, S. G. 2015. Development and utilization of genomic resources for genetic improvement of proso millet (Panicum miliaceum L.). ETD collection for University of Nebraska-Lincoln. AAI3716450.
25 Yacoubi, R., C. Job, M. Belghazi, W. Chaibi, and D. Job. 2011. Toward characterizing seed vigor in alfalfa through proteomic analysis of germination and priming. J. Proteome Res. 10:3891-3903.   DOI
26 Sahnoun-Abid, I., G. Recorbet, H. Zuber, N. Sommerer, D. Centeno, E. Dumas-Gaudot, and S. Smiti-Aschi. 2009. Proteomic characterisation of subclover seed storage proteins during germination. J. Sci. Food Agri. 89:1787-1801.   DOI
27 Vierling, E. 1991. The roles of heat shock proteins in plants. Annu. Rev. Plant Biol. 42:579-620.   DOI
28 Wang, W, B. Vinocur, O. Shoseyov, and A. Altman. 2004. Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci. 9:244-252.   DOI
29 Wehmeyer, N. and E. Vierling. 2000. The expression of small heat shock proteins in seeds responds to discrete developmental signals and suggests a general protective role in desiccation tolerance. Plant Physiol. 122:1099-1108.   DOI
30 Xu, C. and B. Huang. 2010. Differential proteomic responses to water stress induced by PEG in two creeping bentgrass cultivars differing in stress tolerance. J. Plant Physiol. 167:1477-1485.   DOI
31 Yang, M. F., Y. J Liu, Y. Liu, H. Chen, F. Chen, and S. H. Shen. 2009. Proteomic analysis of oil mobilization in seed germination and postgermination development of Jatropha curcas. J. Proteome Res. 8:1441-1451.   DOI
32 Yang, P., H. Chen, Y. Liang, and S. Shen. (2007a). Proteomic analysis of de-etiolated rice seedlings upon exposure to light. Proteomics. 7:2459-2468.   DOI
33 Yang, P., Y. Liang, S. Shen, and T. Kuang. 2006. Proteome analysis of rice uppermost internodes at the milky stage. Proteomics. 6:3330-3338.   DOI
34 Yang, Q., Y. Wang, J. Zhang, W. Shi, C. Qian, and X. Peng. 2007b. Identification of aluminum-responsive proteins in rice roots by a proteomic approach: Cysteine synthase as a key player in Al response. Proteomics. 7:737-749.   DOI
35 Brown, L., B. Rosner, W. W. Willett, and F. M. Sacks. 1999. Cholesterol-lowering effects of dietary fiber: a meta-analysis. Am. J. Clin. Nutr. 69:30-42.   DOI
36 Marlett, J. A., M. I. McBurney, and J. L. Slavin. 2002. Position ofthe American Dietetic Association: health implications ofdietary fiber. J. Am. Diet. Assoc. 102:993-1000.   DOI
37 Baltensperger, D., D. J. Lyon, R. Anderson, T. Holman, C. Stymieste, J. Shanahan, L.A. Nelson, K.L. DeBoer, G.L. Hein, and J. Krall. 1995. EC95-137 Producing and Marketing Proso Millet in the High Plains. Historical Materials from University of Nebraska-Lincoln Extension. p.709.
38 Bourgeois, M., F. Jacquin, V. Savois, N. Sommerer, V. Labas, C. Henry, and J. Burstin. 2009. Dissecting the proteome of pea mature seeds reveals the phenotypic plasticity of seed protein composition. Proteomics. 9:254-271.   DOI
39 Bouvier F., N. Linka, J. C. Isner, J. Mutterer, A. P. Weber, and B. Camara. 2006. Arabidopsis SAMT1 defines a plastid transporter regulating plastid biogenesis and plant development. The Plant Cell. 18:3088-3105.   DOI
40 Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248-254   DOI
41 Chi, F., P. Yang, F. Han, Y. Jing, and S. Shen. 2010. Proteomic analysis of rice seedlings infected by Sinorhizobium meliloti 1021. Proteomics. 10:1861-1874.   DOI
42 Chitteti, B. R. and Z. Peng. 2007. Proteome and phosphoproteome differential expression under salinity stress in rice (Oryza sativa) roots. J. Proteome Res. 6:1718-1727.   DOI
43 Chronis, D. and H. B. Krishnan. 2003. Sulfur Assimilation in Soybean. Crop Sci. 43:1819-1827.   DOI
44 Crosatti, C., P. P. de Laureto, R. Bassi, and L. Cattivelli. 1999. The interaction between cold and light controls the expression of the cold-regulated barley gene cor14b and the accumulation of the corresponding protein. Plant Physiol. 119:671-680.   DOI
45 Ding, C., J. You, S. Wang, Z. Liu, G. Li, Q. Wang, and Y. Ding. 2012. A proteomic approach to analyze nitrogen-and cytokinin-responsive proteins in rice roots. Mol. Biol. Rep. 39:1617-1626.   DOI
46 Foley, R.C., L. L. Gao, A. Spriggs, L.Y. Soo, D. E. Goggin, P. M. Smith, C. A. Atkins, and K. B. Singh. 2011. Identification and characterisation of seed storage protein transcripts from Lupinus angustifolius. BMC Plant Biol. 11:1.   DOI
47 Emes, M., C. Bowsher, C. Hedley, M. Burrell, E. Scrase-Field, and I. Tetlow. 2003. Starch synthesis and carbon partitioning in developing endosperm. J. Expt. Bot. 54:569-575.   DOI
48 Fan, W., W. Cui, X. Li, S. Chen, G. Liu, and S. Shen. 2011. Proteomics analysis of rice seedling responses to ovine saliva. J. Plant Physiol. 168:500-509.   DOI
49 Finnie, C., K. Maeda, O. Ostergaard, K. Bak-Jensen, J. Larsen, and B. Svensson. 2004. Aspects of the barley seed proteome during development and germination. Biochem. Soc. Trans. 32:517-519.   DOI
50 Gallardo, K., C. Job, S. P. Groot, M. Puype, H. Demol, J. Vandekerckhove, and D. Job. 2001. Proteomic analysis of Arabidopsis seed germination and priming. Plant Physiol. 126:835-848.   DOI
51 Gallardo, K., C. Le Signor, J. Vandekerckhove, R. D. Thompson, and J. Burstin. 2003. Proteomics of Medicago truncatula seed development establishes the time frame of diverse metabolic processes related to reserve accumulation. Plant Physiol. 133:664-682.   DOI
52 Gallo, G., R. Alduina, G. Renzone, J. Thykaer, L. Bianco, A. Eliasson-Lantz, A. Scaloni, and A. M. Puglia. 2010. Differential proteomic analysis highlights metabolic strategies associated with balhimycin production in Amycolatopsis balhimycina chemostat cultivations. Microb. Cell Fact. 9:1.   DOI
53 Georgopoulos, C. and W. Welch. 1993. Role of the major heat shock proteins as molecular chaperones. Annu. Rev. Cell Biol. 9:601-634.   DOI
54 He, D., C. Han, J. Yao, S. Shen, and P. Yang. 2011. Constructing the metabolic and regulatory pathways in germinating rice seeds through proteomic approach. Proteomics. 11:2693-2713.   DOI
55 Guo, S., W. Wharton, P. Moseley, and H. Shi. 2007. Heat shock protein 70 regulates cellular redox status by modulating glutathione-related enzyme activities. Cell Stress Chaperones. 12: 45-254.
56 Hajduch, M., J. E. Casteel, K. E. Hurrelmeyer, Z. Song, G. K. Agrawal, and J. J. Thelen. 2006. Proteomic analysis of seed filling in Brassica napus. Developmental characterization of metabolic isozymes using high-resolution two-dimensional gel electrophoresis. Plant Physiol. 141:32-46.   DOI
57 Han, C., X. Yin, D. He, and P. Yang. 2013. Analysis of proteome profile in germinating soybean seed, and its comparison with rice showing the styles of reserves mobilization in different crops. PloS One. 8:e56947.   DOI
58 He, D. and P. Yang. 2013. Proteomics of rice seed germination. Front. Plant Sci. 4:10.3389.
59 Helm, J. L., A. A. Schneiter, and L. Johnson. 1990. Proso millet in North Dakota. NDSU Extension Service -North Dakota State University (USA).
60 Herman, E. M. and B. A. Larkins. 1999. Protein storage bodies and vacuoles. The Plant Cell. 11:601-613.   DOI
61 Islam, N., S. H. Woo, H. Tsujimoto, H. Kawasaki, and H. Hirano. 2002. Proteome approaches to characterize seed storage proteins related to ditelocentric chromosomes in common wheat (Triticum aestivum L.). Proteomics. 2:1146-1155.   DOI
62 Islam, S., G. Yan, R. Appels, and W. Ma. 2012. Comparative proteome analysis of seed storage and allergenic proteins among four narrow-leafed lupin cultivars. Food Chem. 135:1230-1238.   DOI