Browse > Article

Applications and Developmental Prospect of Protein Microarray Technology  

Oh, Young-Hee (Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST))
Han, Min-Kyu (Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST))
Kim, Hak-Sung (Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST))
Publication Information
KSBB Journal / v.22, no.6, 2007 , pp. 393-400 More about this Journal
Abstract
Analysis of protein interactions/functions in a microarray format has been of great potential in drug discovery, diagnostics, and cell biology, because it is amenable to large-scale and high-throughput biological assays in a rapid and economical way. In recent years, the protein microarray have broaden their utility towards the global analysis of protein interactions on a proteome scale, the functional activity analysis based on protein interactions and post-translational modifications (PTMs), and the discovery of biomarkers through profiling of protein expression between sample and reference pool. As a promising tool for proteomics, the protein microarray technology has advanced outstandingly over the past decade in terms of surface chemistry, acquisition of relevant proteins on a proteomic level, and detection methods. In this article, we briefly describe various techniques for development of protein microarray, and introduce developmental state of protein microarray and its applications.
Keywords
Protein microarray; biochip; high-throughput system;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Tomizaki, K. Y., K. Usui, and H. Mihara (2005), Protein-detecting microarrays: current accomplishments and requirements, Chembiochem. 6, 782-799   DOI   ScienceOn
2 Kyo, M., K. Usui-Aoki, and H. Koga (2005), Label-free detection of proteins in crude cell lysate with antibody arrays by a surface plasmon resonance imaging technique, Anal. Chem. 77, 7115-7121   DOI   ScienceOn
3 Otte, L., U. Wiedemann, B. Schlegel, J. R. Pires, M. Beyermann, P. Schmieder, G. Krause, R. Volkmer-Engert, J. Schneider- Mergener, and H. Oschkinat (2003), WW domain sequence activity relationships identified using ligand recognition propensities of 42 WW domains, Protein Sci. 12, 491-500   DOI   ScienceOn
4 Zhu, H., J. F. Klemic, S. Chang, P. Bertone, A. Casamayor, K. G. Klemic, D. Smith, M. Gerstein, M. A. Reed, and M. Snyder (2000), Analysis of yeast protein kinases using protein chips, Nat. Genet. 26, 283-289   DOI   ScienceOn
5 Houseman, B. T., J. H. Huh, S. J. Kron, and M. Mrksich (2002), Peptide chips for the quantitative evaluation of protein kinase activity, Nat. Biotechnol. 20, 270-274   DOI   ScienceOn
6 Hong, Y., B. L. Webb, H. Su, E. J. Mozdy, Y. Fang, Q. Wu, L. Liu, J. Beck, A. M. Ferrie, S. Raghavan, J. Mauro, A. Carre, D. Mueller, F. Lai, B. Rasnow, M. Johnson, H. Min, J. Salon, and J. Lahiri (2005), Functional GPCR microarrays, J. Am. Chem. Soc. 127, 15350-15351   DOI   ScienceOn
7 Haab, B. B., M. J. Dunham, and P. O. Brown (2001), Protein microarrays for highly parallel detection and quantitation of specific proteins and antibodies in complex solutions, Genome Biol. 2, RESEARCH0004
8 Sukhanov, S. and P. Delafontaine (2005), Protein chip-based microarray profiling of oxidized low density lipoprotein-treated cells, Proteomics 5, 1274-1280   DOI   ScienceOn
9 Gelperin, D. M., M. A. White, M. L. Wilkinson, Y. Kon, L. A. Kung, K. J. Wise, N. Lopez-Hoyo, L. Jiang, S. Piccirillo, H. Yu, M. Gerstein, M. E. Dumont, E. M. Phizicky, and M. Snyder, E. J. Grayhack (2005), Biochemical and genetic analysis of the yeast proteome with a movable ORF collection, Genes Dev. 19, 2816-2826   DOI   ScienceOn
10 Zhu, H. and M. Snyder (2003), Protein chip technology, Curr Opin Chem Biol. 7, 55-63   DOI   ScienceOn
11 Templin, M. F., S. D. Monika Schrenk, C. P. Traub, C. F. Vohringer, and O. J. Thomas (2002), Protein microarray technology, TRENDS in Biotech. 20, 160-166   DOI   ScienceOn
12 Han, M. K., M. Y. Hong, D. Lee, D. E. Lee, G. Y. Noh, J. H. Lee, S. H. Kim, and H. S. Kim (2006), Expression Profiling of Proteins in L-Threonine Biosynthetic Pathway of Escherichia coli by using Antibody Microarray, Proteomics 6, 5929-5940   DOI   ScienceOn
13 Miller, J. C., H. Zhou, J. Kwekel, R. Cavallo, J. Burke, E. B. Butler, B. S. Teh, and B. B. Haab (2003), Antibody microarray profiling of human prostate cancer sera: antibody screening and identification of potential biomarkers, Proteomics 3, 56-63   DOI   ScienceOn
14 Wingren, C., C. Steinhauer, J. Ingvarsson, E. Persson, K. Larsson, and C. A. Borrebaeck (2005), Microarrays based on affinity-tagged single-chain Fv antibodies: sensitive detection of analyte in complex proteomes, Proteomics 5, 1281-1291   DOI   ScienceOn
15 Zhu, H., M. Bilgin, R. Bangham, D. Hall, A. Casamayor, P. Bertone, N. Lan, R. Jansen, S. Bidlingmaier, T. Houfek, T. Mitchell, P. Miller, R. A. Dean, M. Gerstein, and M. Snyder (2001), Global analysis of protein activities using proteome chips, Science 293, 2101-2105   DOI   ScienceOn
16 Andersson, O., M. Kozlowski, T. Garachtchenko, C. Nikoloff, N. Lew, D. J. Litman, and G. Chaga (2005), Determination of relative protein abundance by internally normalized ratio algorithm with antibody arrays, J. Proteome Res. 4, 758-67   DOI   ScienceOn
17 Hiller, R., S. Laffer, C. Harwanegg, M. Huber, W. M. Schmidt, A. Twardosz, B. Barletta, W. M. Becker, K. Blaser, H. Breiteneder, M. Chapman, R. Crameri, M. Duchene, F. Ferreira, H. Fiebig, K. Hoffmann-Sommergruber, T. P. King, T. Kleber-Janke, V. P. Kurup, S. B. Lehrer, J. Lidholm, U. Muller, C. Pini, G. Reese, O. Scheiner, A. Scheynius, H. D. Shen, S. Spitzauer, R. Suck, I. Swoboda, W. Thomas, R. Tinghino, M. Van Hage-Hamsten, T. Virtanen, D. Kraft, M. W. Muller, and R. Valenta (2002), Microarrayed allergen molecules: diagnostic gatekeepers for allergy treatment, FASEB J. 16, 414-416   DOI
18 Gao, W. M., R. Kuick, R. P. Orchekowski, D. E. Misek, J. Qiu, A. K. Greenberg, W. N. Rom, D. E. Brenner, G. S. Omenn, B. B. Haab, and S. M. Hanash (2005), Distinctive serum protein profiles involving abundant proteins in lung cancer patients based upon antibody microarray analysis, BMC Cancer 5, 110   DOI
19 Michaud, G. A., M. Salcius, F. Zhou, R. Bangham, J. Bonin, H. Guo, M. Snyder, P. F. Predki, and B. I. Schweitzer (2003), Analyzing antibody specificity with whole proteome microarrays, Nat. Biotechnol. 21, 1509-1512   DOI   ScienceOn
20 Andersson, O., M. Kozlowski, T. Garachtchenko, C. Nikoloff, N. Lew, D. J. Litman, and G. Chaga (2005), Determination of relative protein abundance by internally normalized ratio algorithm with antibody arrays, J. Proteome Res. 4, 758-767   DOI   ScienceOn
21 Ho, S. W., G. Jona, C. T. Chen, M. Johnston, and M. Snyder (2006), Linking DNA-binding proteins to their recognition sequences by using protein microarrays, Proc. Natl. Acad. Sci. USA 103, 9940-9945
22 Steller, S., P. Angenendt, D. J. Cahill, S. Heuberger, H. Lehrach, and J. Kreutzberger (2005), Bacterial protein microarrays for identification of new potential diagnostic markers for Neisseria meningitidis infections, Proteomics 5, 2048-2055   DOI   ScienceOn
23 Sreekumar, A., M. K. Nyati, S. Varambally, T. R. Barrette, D. Ghosh, T. S. Lawrence, and A. M. Chinnaiyan (2001), Profiling of cancer cells using protein microarrays: discovery of novel radiation-regulated proteins, Cancer Res. 61, 7585-7593
24 Espejo, A., J. Cote, A. Bednarek, S. Richard, and M. T. Bedford (2002), A protein-domain microarray identifies novel protein-protein interactions, Biochem. J. 367, 697-702   DOI   ScienceOn
25 Kersten, B., A. Possling, F. Blaesing, E. Mirgorodskaya, J. Gobom, and H. Seitz (2004), Protein microarray technology and ultraviolet crosslinking combined with mass spectrometry for the analysis of protein-DNA interactions, Anal. Biochem. 331, 303-13   DOI   ScienceOn
26 Madoz-Gurpide, J., Wang H., Misek D. E., Brichory F., and S. M. Hanash (2001), Protein based microarrays: a tool for probing the proteome of cancer cells and tissues, Proteomics 1, 1279-1287   DOI   ScienceOn
27 Schena, M., D. Shalon, R. W. Davis, and P. O. Brown (1995), Quantitative monitoring of gene expression patterns with a complementary DNA microarray, Science 270, 467-470   DOI   ScienceOn
28 Stoevesandt, O., M. Elbs, K. Kohler, A. C. Lellouch, R. Fischer, T. Andre, and R. Brock (2005), Peptide microarrays for the detection of molecular interactions in cellular signal transduction, Proteomics 5, 2010-2017   DOI   ScienceOn
29 Zhu, H., S. Hu, G. Jona, X. Zhu, N. Kreiswirth, B. M. Willey, T. Mazzulli, G. Liu, Q. Song, P. Chen, M. Cameron, A. Tyler, J. Wang, J. Wen, W. Chen, S. Compton, and M. Snyder (2006), Severe acute respiratory syndrome diagnostics using a coronavirus protein microarray, Proc. Natl. Acad. Sci. USA 103, 4011-4016
30 Abbott, A. (2002), Betting on tomorrow's chips, Nature 415, 112-114   DOI   ScienceOn
31 Hong, M. Y., D. Lee, and H. S. Kim (2005), Kinetic and equilibrium binding analysis of protein-ligand interactions at poly(amidoamine) dendrimer monolayers, Anal. Chem. 77, 7326-7334   DOI   ScienceOn
32 Zhou, H., K. Bouwman, M. Schotanus, C. Verweij, J. A. Marrero, D. Dillon, J. Costa, P. Lizardi, and B. B. Haab (2004), Two-color, rolling-circle amplification on antibody microarrays for sensitive, multiplexed serum-protein measurements, Genome Biol. 5, R28   DOI
33 Ramachandran, N., E. Hainsworth, B. Bhullar, S. Eisenstein, B. Rosen, A. Y. Lau, J. C. Walter, and J. LaBaer (2004), Self-assembling protein microarrays, Science 305, 86-90   DOI   ScienceOn
34 Holz. C., O. Hesse, N. Bolotina, U. Stahl, and C. Lang (2002), A micro-scale process for high-throughput expression of cDNAs in the yeast Saccharomyces cerevisiae, Protein Expr. Purif. 25, 372-378   DOI   ScienceOn
35 LaBaer, J. and N. Ramachandran (2005), Protein microarrays as tools for functional proteomics, Curr Opin Chem Biol. 9, 14-19   DOI   ScienceOn
36 Bock, C., M. Coleman, B. Collins, J. Davis, G. Foulds, L. Gold, C. Greef, J. Heil, J. S. Heilig, B. Hicke, M. N. Hurst, G. M. Husar, D. Miller, R. Ostroff, H. Petach, D. Schneider, B. Vant-Hull, S. Waugh, A. Weiss, S. K. Wilcox, and D. Zichi (2004), Photoaptamer arrays applied to multiplexed proteomic analysis, Proteomics 4, 609-618   DOI   ScienceOn
37 Varnum, S. M., R. L. Woodbury, and R. C. Zangar (2004), A protein microarray ELISA for screening biological fluids, Methods Mol. Biol. 264, 161-172
38 Mitchell, P. (2002), A perspective on protein microarrays, Nat. Biotechnol. 3, 225-229
39 Cutler, P. (2003), Protein arrays: the current state-of-the-art, Proteomics 3, 3-18   DOI   ScienceOn
40 Kung, L. A. and M. Snyder (2006), Proteome chips for whole-organism assays, Nat. Rev. Mol. Cell Biol. 7, 617-622   DOI   ScienceOn
41 Jones, R. B., A. Gordus, J. A. Krall, and G. MacBeath (2006), A quantitative protein interaction network for the ErbB receptors using protein microarrays, Nature 439, 168-174   DOI   ScienceOn
42 Telechem's protocols
43 Angenendt, P. (2005), Progress in protein and antibody microarray technology, Drug Discov. Today 10, 503-511   DOI   ScienceOn
44 Oh, Y. H., M. Y. Hong, Z. Jin, T. Lee, M. K. Han, S. Park, and H. S. Kim (2007), Chip-based analysis of SUMO (small ubiquitin-like modifier) conjugation to a target protein, Biosens Bioelectron. 22, 1260-1267   DOI   ScienceOn