• Title/Summary/Keyword: protein tyrosine phosphatase inhibitor

Search Result 41, Processing Time 0.024 seconds

Inhibition of protein tyrosine phosphatase non-receptor type 2 by PTP inhibitor XIX: Its role as a multiphosphatase inhibitor

  • Le, Hien Thi Thu;Cho, Young-Chang;Cho, Sayeon
    • BMB Reports
    • /
    • v.50 no.6
    • /
    • pp.329-334
    • /
    • 2017
  • Protein tyrosine phosphatases (PTPs) play crucial roles in signal transduction and their functional alteration has been detected in many diseases. PTP inhibitors have been developed as therapeutic drugs for diseases that are related to the activity of PTPs. In this study, PTP inhibitor XIX, an inhibitor of CD45 and PTEN, was investigated whether it inhibits other PTPs. Protein tyrosine phosphatase non-receptor type 2 (PTPN2) was selectively inhibited by the inhibitor in a competitive manner. Drug affinity responsive target stability (DARTS) analysis showed that the inhibitor induces conformational changes in PTPN2. Phosphorylation levels of signal transducer and activator of transcription 3 (STAT3) at Tyr-705, a crucial site for STAT3 activation and target site of PTPN2, decreased upon exposure to the inhibitor. Our results suggest that PTP inhibitor XIX might be considered as an effective regulator of PTPN2 for treating diseases related to PTPN2.

Regulation of $Ca_v3.2Ca^{2+}$ Channel Activity by Protein Tyrosine Phosphorylation

  • Huh, Sung-Un;Kang, Ho-Won;Park, Jin-Yong;Lee, Jung-Ha
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.2
    • /
    • pp.365-368
    • /
    • 2008
  • Calcium entry through $Ca_v3.2Ca^{2+}$ channels plays essential roles for various physiological events including thalamic oscillation, muscle contraction, hormone secretion, and sperm acrosomal reaction. In this study, we examined how protein tyrosine phosphatases or protein tyrosine kinases affect $Ca_v3.2Ca^{2+}$ channels reconstituted in Xenopus oocytes. We found that $Ca_v3.2$ channel activity was reduced by 25% in response to phenylarsine oxide (tyrosine phosphatase inhibitor), whereas it was augmented by 19% in response to Tyr A47 or herbimycin A (tyrosine kinase inhibitors). However, other biophysical properties of $Ca_v3.2$ currents were not significantly changed by the drugs. These results imply that $Ca_v3.2$ channel activity is capable of being increased by activation of tyrosine phosphatases, but is decreased by activation of tyrosine kinases.

Screening of Marine Microbial Extracts for Tyrosine Phosphatase 1B Inhibitors

  • Sohn, Jae-Hak;Park, Sun Jung;Seo, Changon;Chun, Bokyung;Oh, Hyuncheol
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.2 no.4
    • /
    • pp.230-233
    • /
    • 2007
  • Protein tyrosine phosphatase 1B (PTP1B) acts as a negative regulator of insulin signaling, and selective inhibition of PTP1B has served as a potential drug target for the treatment of type 2 diabetes. As part of our searching for PTP1B inhibitors from natural products, the extracts of marine microorganisms were screened for the inhibitory effects on the activity of protein tyrosine phosphatase 1B (PTP1B). Among the tested 304 extracts, 29 extracts exhibited inhibition rate ranging 40.1 - 83.6 % against PTP1B at the concentration level of $30{\mu}g/mL$.

  • PDF

Protein tyrosine phosphatase PTPN21 acts as a negative regulator of ICAM-1 by dephosphorylating IKKβ in TNF-α-stimulated human keratinocytes

  • Cho, Young-Chang;Kim, Ba Reum;Cho, Sayeon
    • BMB Reports
    • /
    • v.50 no.11
    • /
    • pp.584-589
    • /
    • 2017
  • Intercellular adhesion molecule-1 (ICAM-1), which is induced by tumor necrosis factor (TNF)-${\alpha}$, contributes to the entry of immune cells into the site of inflammation in the skin. Here, we show that protein tyrosine phosphatase non-receptor type 21 (PTPN21) negatively regulates ICAM-1 expression in human keratinocytes. PTPN21 expression was transiently induced after stimulation with TNF-${\alpha}$. When overexpressed, PTPN21 inhibited the expression of ICAM-1 in HaCaT cells but PTPN21 C1108S, a phosphatase activity-inactive mutant, failed to inhibit ICAM-1 expression. Nuclear factor-${\kappa}B$ (NF-${\kappa}B$), a key transcription factor of ICAM-1 gene expression, was inhibited by PTPN21, but not by PTPN21 C1108S. PTPN21 directly dephosphorylated phospho-inhibitor of ${\kappa}B$ ($I{\kappa}B$)-kinase ${\beta}$ ($IKK{\beta}$) at Ser177/181. This dephosphorylation led to the stabilization of $I{\kappa}B{\alpha}$ and inhibition of NF-${\kappa}B$ activity. Taken together, our results suggest that PTPN21 could be a valuable molecular target for regulation of inflammation in the skin by dephosphorylating p-$IKK{\beta}$ and inhibiting NF-${\kappa}B$ signaling.

Screening of the Inhibitory Activity of Medicinal Plants against VHR Dual-Specificity Protein Tyrosine Phosphatase (DS- PTPase) (생약의 VHR Dual - Specificity Protein Tyrosine Phosphatase (DS-PTPase) 저해 활성 검색)

  • Lee, Myung-Sun;Bae, Eun-Young;Oh, Won-Keun;Ahn, Soon-Cheol;Kim, Bo-Yeon;Sohn, Cheon-Bae;Ahn, Jong-Seog
    • Korean Journal of Pharmacognosy
    • /
    • v.33 no.1 s.128
    • /
    • pp.69-73
    • /
    • 2002
  • The methanol extracts of 162 herbal medicines were screened for the inhibitory activity against VHR dualspecificity protein tyrosine phosphatase (DS-PTPase). Seventeen medicinal plants, Scutellaria baicalensis, Cuscuta chinensis, Caesalpinia sappan, Arecae pericarpium, Rubus coreanus, Machilus thunbergii, Amsonia elliptica Cinnamomum cassia, Arisaema erubescens, Pueraria thunbergiana, Dendrobium moniliforme, Mentha arvensis, Peucedanum japonicum, Salvia miltiorrhiza, Leonurus sibiricus, Siegesbeckia orientalis, Prunella vulgaris showed potent VHR DS-PTPase inhibitory activity.

Carotenogenesis in Haematococcus lacustris: Role of Protein Tyrosine Phosphatases

  • Park, Jae-Kweon;Tran, Phuong Ngoc;Kim, Jeong-Dong;Hong, Seong-Joo;Lee, Choul-Gyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.9
    • /
    • pp.918-921
    • /
    • 2009
  • In the present study, we examined the inhibitory effects of protein tyrosine phosphatase (PTPase) inhibitors, including sodium orthovanadate (SOV), ammonium molybdate (AM), and iodoacetamide (IA), on cell growth, accumulation of astaxanthin, and PTPase activity in the photosynthetic algae Haematococcus lacustris. PTPase activity was assayed spectrophotometrically and was found to be inhibited 60% to 90% after treatment with the inhibitors. SOY markedly abolished PTPase activity, significantly activating the accumulation of astaxanthin. These data suggest that the accumulation of astaxanthin in H. lacustris results from the concerted actions of several PTPases.

Structure-Based Virtual Screening of Protein Tyrosine Phosphatase Inhibitors: Significance, Challenges, and Solutions

  • Reddy, Rallabandi Harikrishna;Kim, Hackyoung;Cha, Seungbin;Lee, Bongsoo;Kim, Young Jun
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.5
    • /
    • pp.878-895
    • /
    • 2017
  • Phosphorylation, a critical mechanism in biological systems, is estimated to be indispensable for about 30% of key biological activities, such as cell cycle progression, migration, and division. It is synergistically balanced by kinases and phosphatases, and any deviation from this balance leads to disease conditions. Pathway or biological activity-based abnormalities in phosphorylation and the type of involved phosphatase influence the outcome, and cause diverse diseases ranging from diabetes, rheumatoid arthritis, and numerous cancers. Protein tyrosine phosphatases (PTPs) are of prime importance in the process of dephosphorylation and catalyze several biological functions. Abnormal PTP activities are reported to result in several human diseases. Consequently, there is an increased demand for potential PTP inhibitory small molecules. Several strategies in structure-based drug designing techniques for potential inhibitory small molecules of PTPs have been explored along with traditional drug designing methods in order to overcome the hurdles in PTP inhibitor discovery. In this review, we discuss druggable PTPs and structure-based virtual screening efforts for successful PTP inhibitor design.