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Calcium entry through Ca 3.2 Ca’ channels plays essential
roles for various physiological events including thalamic
oscillation, muscle contraction, hormone secretion, and
sperm acrosomal reaction. In this study, we examined how
protein tyrosine phosphatases or protein tyrosine kinases
affect Ca,3.2 Ca’ channels reconstituted in Xeropus oocytes.
We found that Ca 3.2 channel activity was reduced by
25% in response to phenylarsine oxide (tyrosine phosphatase
inhibitor), whereas it was augmented by 19% in response
to Tyr A47 or herbimycin A (tyrosine kinase inhibitors).
However, other biophysical properties of Ca 3.2 currents
were not significantly changed by the drugs. These results
imply that Ca3.2 channel activity is capable of being
increased by activation of tyrosine phosphatases, but is
decreased by activation of tyrosine kinases.
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Calcium entry through low-voltage-activated (LVA) Ca®*
channels (also called T-type Ca** channels), of which the
activation threshold is around resting membrane potentials,
mediates a variety of physiological processes including
muscle contraction, low-threshold calcium spikes triggering
Na'-dependent action potentials, acrosome reactions, synaptic
plasticity, secretion of hormones, and gene expression [4].
Moreover, these channels have been reported to be coupled
with pathophysiological conditions such as absence epilepsy
[17], cardiac hypertrophy [22], pain generation [14], and
autism spectrum disorders [20].

Protein tyrosine kinases (PTK) are known to be involved
in not only cell growth, differentiation [8], apoptosis [2,
23] and sperm motility [10], but also the regulation of
various ion channels [1, 15,24]. However, only a few
studies have investigated the regulation of LVA Ca”* channels
by protein tyrosine kinases, thereby related information
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being limited. For example, the inhibition of PTK by Tyr
A47 (protein tyrosine kinase inhibitor) increased LVA Ca™
channel activity in mouse spermatogenic cells [5]. On the
contrary, application of other PTK inhibitors decreased T-
type and N-type current amplitudes in NG108-15 cells [7].
Regulation of LVA Ca™ channels has become much more
complicated by the finding that PTK inhibitors such as
genistein can inhibit L-type Ca™ and LVA Ca,3.1 channels
via directly inhibiting the channel rather than affecting
tyrosine phosphorylation [3, 11].

In this study, we investigated to examine how Ca,3.2
Ca”" channels reconstituted in the Xenopus oocyte system are
regulated by PTK. We found that application of phenylarsine
oxide (PAO, tyrosine phosphatase inhibitor) significantly
reduced Ca,3.2 channel activity. Consistently, application
of tyrphostins A47 (Tyr A47, tyrosine kinase inhibitor)
increased Ca,3.2 channel activity without affecting other
biophysical properties of the Ca 3.2 channels. These findings
strongly suggest that Ca,3.2 channel activity can be
downregulated by activation of endogenous tyrosine kinases
in Xenopus oocytes.

Ca3.2 (o; GenBank Accession No. AF051946)
cRNA was synthesized using T7 RNA polymerase, and
1 ng of Ca,3.2 cRNA was injected into each oocyte that
had been prepared as previously described [6, 13]. Barium
inward currents were measured using a two-microelectrode
voltage clamp amplifier (OC-725C; Warmer Instruments,
CT, US.A.) from the 3" day after cRNA injection in the
oocytes. Peak currents and exponential fits to currents
were analyzed using Clamfit software (Axon Instruments,
CA,US.A)).

Application of a test potential of -20 mV from a holding
potential of ~90 mV did not elicit significant currents from
the oocytes injected with H,O or 100 mM KCI (data not
shown). These facts suggest that the Xenopus oocytes used
for this study do not express or barely express endogenous
T-type channels. On the contrary, robust inward currents
were evoked in response to the same test potential from
Xenopus oocytes where Ca 3.2 Ca’* channel cRNA was
injected, indicating that exogenous Ca,3.2 Ca*’ channels
were well expressed in the expression system (data not
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Fig. 1. Effect of PAO on Ca,3.2 channel activity.

A. Time course of PAO-mediated stimulation on Ca,3.2 channel activity.
Currents were elicited by a test potential at -20 mV from a holding
potential of =90 mV every 15 sec. Ca,3.2 currents were normalized to the
current amplitude just before application of 5 uM PAO solution (Sigma-
Aldrich, MO, U.S.A.), and the average percentages of current amplitude
were plotted. Ca,3.2 current activity was not significantly run-up or run-
down during 30 min perfusion of 10 mM Ba™" solution (Control, O; n=6, a
& b), while Ca,3.2 current activity was reduced by application of 5 uM
PAO over 30 min (PAO, @; n=11, ¢ & d). B. The normalized current
activity of Ca,3.2 was decreased down to 69.2+6.0% (meantSEM) and the
significant differences of the results were evaluated by Student’s r-test: *,
P<0.05.

shown). Analysis of the recorded currents displayed that
these biophysical properties of Ca 3.2 Ca** channels were
very similar to those previously reported [12, 13, 18].
Superfusion of 10 mM Ba* solution did not significantly
change the Ca,3.2 current amplitude in response to the test
potential of =20 mV, from a holding potential of -90 mV
every 15sec over 30 min (Fig. 1A, n=6). In contrast,
application of 10 mM Ba™" solution containing 5 uM PAO
(phenylarsine oxide, of tyrosine phosphatase inhibitor) began
to decrease the Ca,3.2 current amplitude after a lagging
time of 5-7 min, and the amplitude was diminished by
25.4+3.6% over 30 min (Fig. 1A, n=11). The downregulation
effect on Ca, 3.2 implies that Ca 3.2 activity was decreased
by indirect stimulation of PTK in the oocytes, possibly
resulted from inhibition of tyrosine phosphatases by PAO.
This PAO effect is consistent with the previous report that
the tyrosine phosphatase inhibitor decreased the T-type
current amplitude in mouse spermatogenic cells [5].
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Fig. 2. Effect of Tyr A47 and herbimycin A on Ca,3.2 channel
activity.

A. Time course of Tyr A47-mediated stimulation on CaZ3.2 channel
activity. Ca,3.2 current activity during 25 min perfusion of 10 mM Ba®
solution showed no significant run-up or run-down (Control, O; n=7, ¢ &
d), while application of 10 uM Tyr A47 for 25 min increased the Ca 3.2
current activity (Tyr A47, @; n=6, a & b). B. The normalized current
activity of Ca,3.2 was enhanced up to 19.0+6.0% and 19.0x4.7% after
application of 10 uM Tyr A47 and 1| uM herbimycin A, respectively.
Significant differences of the results were evaluated by Student’s r-test:
*, P<0.05. Tyrphostins A47 and herbimycin A were purchased from
Sigma-Aldrich.

To further examine the implication, we tested whether
Ca,3.2 channel activity can be increased by inhibition
of tyrosine kinase(s). When 10 uM Tyr A47 or 1 uM
herbimycin A (protein tyrosine kinase inhibitors) was
superfused to an oocyte positioned at the chamber for
25 min, the Ca,3.2 current amplitude was slowly increased
by 19.3£6.0% or 19.0+4.7%, respectively, with a lagging
time of 5-8 min (Fig. 2). Notably, the typical enhancement
effects of Tyr A47 or herbimycin A on Ca,3.2 current
amplitude were detected from oocytes of 5 batches out of
12, whereas there were no significant changes from the
other 7 batches, suggesting that tyrosine phosphorylation
effects could be diverse depending on batches of oocytes.

We also examined whether the down- or upregulation
effects on Ca,3.2 channel activity by PAO or Tyr A47
were accompanied with modification of other biophysical
properties of Ca,3.2 channels. Comparison of current-voltage
relationships, steady-state inactivation, and recovery recorded
by a series of voltage-protocols before and 25 min after
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Fig. 3. Biophysical properties of CaJ3.2 before and after
treatment with PAO and Tyr A47.

A. Normalized [-V relationships. Voltage steps were depolarized by
10 mV increments from -70 mV to +40 mV from a holding potential of
-90 mV. Peak currents obtained during test potentials were normalized to
the maximum observed sefore application of 5 pM PAO or 10 uM Tyr
A47. B. Peak currents of test potentials were normalized to the maximum
peak current (-20 mV) observed in each case (Control, O; Tyr A47
application, @; PAO application, W). C. Steady-state inactivation and
activation curves of the control (O), 25 min after Tyr A47 application (@),
and 30 min after application of 5 uM PAQ (m). Steady-state inactivation
properties were tested during voltage steps to -20 mV from prepulse
potentials varying from -100mV to -30mV in 10 mV increments.
Activation curves were attained by plotting chord conductances (G),
calculated by dividing the current amplitude by driving force (apparent
reversal potentials-test potentials), normalized to the peak conductance
obtained, averaged, and then plotted against the test potential. D. Recovery
time courses of the control (O), 25 min after 10 uM Tyr A47 treatment
(@), and 30 min after 5 | M PAO treatment (). Relative peak currents of
the test pulse depending on the interpulse duration time were plotted and
then fitted by single expoential association. Data reptesent mean+SEM. E
and F, Average activation (E) and inactivation (F) time constants of Ca,3.2
currents before (O) and after treatment of 10 uM Tyr A47 (@) and 5 pM
PAO (W) were plotted as a function of test potentials.

application of PAO or Tyr A47 displayed that, except for
the down- or upregulation of Ca,3.2 current amplitude, no
significant differences were found before and after those
drugs in normalized current-voltage relationships, half-
inactivation potentials for steady-state inactivation, half-
activation, and recovery time constants (Fig. 3).

The Ca,3.2 Ca®" channel has been identified to be the
main LVA Ca®* channel isoform expressed in mammalian
spermatogenic cells and involved in the acrosome reaction
[9,16,19,21]. LVA Ca* channel activity in mouse
spermatogenic cells was reported to be downregulated by
inhibiting the protein tyrosine phosphatases [5]. On the basis
of these findings, we investigated whether the inhibition of
protein tyrosine phosphatase by phenylarsine oxide (PAO)
can similarly modulate Ca,3.2 Ca** channels reconstituted
in the Xenopus oocyte expression system. Consistent with
the previous report [5], we found that Ca,3.2 channel
activity was reduced by the protein tyrosine phosphatase
inhibitor, suggesting that the reduction of Ca,3.2 channel
activity might be mediated via phosphorylation of endogenous
protein tyrosine kinases in oocytes, of which the activity is
indirectly stimulated with inhibition of the protein tyrosine
phosphatases by PAO. This suggestion was supported by
the upregulation effect of Ca,3.2 channel activity by Tyr
A47 or herbimycin A. Although the Ca,3.2 channel activity
was down- and upregulated by the protein tyrosine
phosphatase inhibitor and the protein tyrosine kinase
inhibitors, respectively, none of the biophysical properties
of the Ca3.2 channel, including half activation and
inactivation voltages, activation and inactivation kinetics
of currents, and recovery rates, were significantly changed
by the drugs. A simple interpretation for the up- or
downregulations of Ca,3.2 channel activity is that the channel
activity changes might be caused by changes of the numbers
or opening probability of the channels in the plasma
membrane. Alternatively, it is possible that PAO and Tyr
A47 (or herbimycin A) might change the phosphorylation
level(s) of unidentified proteins interacting with the Ca,3.2
channels rather than the channels themselves, inducing up-
or downregulation of the Ca 3.2 channel activity.

In conclusion, we have reported here that PAO is
capable of decreasing the current amplitude of Ca,3.2,
whereas Tyr A47 and herbimycin A increase the amplitude.
These findings contribute to list up the Ca,3.2 Ca** channel in
the protein group that could be regulated by the activation

Table 1. Summary of the voltage-dependent properties of Ca,3.2 before and after application of PAO or Tyr A47.

Activation Inactivation
Drugs
Vi (mV) k Tyer (M) Vs (mV) k T, (MS)
Control -39.60+0.35 6.23+0.34 3.05+0.21 -63.20+0.24 3.40+£0.21 7.23x1.56
PAO -38.72+0.39 6.63+0.38 2.37+0.41 -63.43+0.21 3.5240.18 8.60+1.22
Tyr A47 -37.93+0.66 6.67+0.64 3.12+0.48 -62.22+0.13 3.18+0.11 8.39+1.45
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of protein tyrosine kinases or tyrosine phosphatases,
although the detailed mechanism and physiological relevance
of the PTK mediated regulatory effects of the Ca3.2
channel remain to be further explored in vivo.
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