Browse > Article
http://dx.doi.org/10.4014/jmb.1701.01079

Structure-Based Virtual Screening of Protein Tyrosine Phosphatase Inhibitors: Significance, Challenges, and Solutions  

Reddy, Rallabandi Harikrishna (Department of Biomedical Chemistry and Nanotechnology Research Center, Konkuk University)
Kim, Hackyoung (Department of Biomedical Chemistry and Nanotechnology Research Center, Konkuk University)
Cha, Seungbin (Department of Biomedical Chemistry and Nanotechnology Research Center, Konkuk University)
Lee, Bongsoo (School of Energy Systems Engineering, Chungang University)
Kim, Young Jun (Department of Biomedical Chemistry and Nanotechnology Research Center, Konkuk University)
Publication Information
Journal of Microbiology and Biotechnology / v.27, no.5, 2017 , pp. 878-895 More about this Journal
Abstract
Phosphorylation, a critical mechanism in biological systems, is estimated to be indispensable for about 30% of key biological activities, such as cell cycle progression, migration, and division. It is synergistically balanced by kinases and phosphatases, and any deviation from this balance leads to disease conditions. Pathway or biological activity-based abnormalities in phosphorylation and the type of involved phosphatase influence the outcome, and cause diverse diseases ranging from diabetes, rheumatoid arthritis, and numerous cancers. Protein tyrosine phosphatases (PTPs) are of prime importance in the process of dephosphorylation and catalyze several biological functions. Abnormal PTP activities are reported to result in several human diseases. Consequently, there is an increased demand for potential PTP inhibitory small molecules. Several strategies in structure-based drug designing techniques for potential inhibitory small molecules of PTPs have been explored along with traditional drug designing methods in order to overcome the hurdles in PTP inhibitor discovery. In this review, we discuss druggable PTPs and structure-based virtual screening efforts for successful PTP inhibitor design.
Keywords
Allosteric targeting; cancers; diabetes; drug designing; molecular docking; protein tyrosine phosphatases;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Peti W, Page R. 2015. Strategies to make protein serine/ threonine (PP1, calcineurin) and tyrosine phosphatases (PTP1B) druggable: achieving specificity by targeting substrate and regulatory protein interaction sites. Bioorgan. Med. Chem. 23: 2781-2785.   DOI
2 Asthagiri D, Liu TQ, Noodleman L, Van Etten RL, Bashfordt D. 2004. On the role of the conserved aspartate in the hydrolysis of the phosphocysteine intermediate of the low molecular weight tyrosine phosphatase. J. Am. Chem. Soc. 126: 12677-12684.   DOI
3 Gruninger RJ, Selinger LB, Mosimann SC. 2008. Effect of ionic strength and oxidation on the P-loop conformation of the protein tyrosine phosphatase-like phytase, PhyAsr. FEBS J. 275: 3783-3792.   DOI
4 van Montfort RLM, Congreve M, Tisi D, Carr R, Jhoti H. 2003. Oxidation state of the active-site cysteine in protein tyrosine phosphatase 1B. Nature 423: 773-777.   DOI
5 Chen Y Y, Chu HM, Pan KT, Teng CH, Wang D L, W ang AHJ, et al. 2008. Cysteine S-nitrosylation protects proteintyrosine phosphatase 1B against oxidation-induced permanent inactivation. J. Biol. Chem. 283: 35265-35272.   DOI
6 Ozkaral B, Ozkan A, Alakent B, Ozkirimli E. 2010. Dynamic analysis of phosphatase 1B WPD loop. Biophys. J. 98: 440a.
7 Yang J, Niu TQ, Zhang AH, Mishra AK, Zhao ZZJ, Zhou GW. 2002. Relation between the flexibility of the WPD loop and the activity of the catalytic domain of protein tyrosine phosphatase SHP-1. J. Cell. Biochem. 84: 47-55.   DOI
8 Critton DA, Tautz L, Page R. 2011. Visualizing active-site dynamics in single crystals of HePTP: opening of the WPD loop involves coordinated movement of the E loop. J. Mol. Biol. 405: 619-629.   DOI
9 Cheney DL, Langley DR, Mueller L. 2004. Protein ensemble-based lead docking: a comparison of FLO, GLIDE, GOLD and ICM in cross docking scenarios. Abstr. Pap. Am. Chem. Soc. 227: U1029.
10 Park H, Bhattarai BR, Ham SW, Cho H. 2009. Structurebased virtual screening approach to identify novel classes of PTP1B inhibitors. Eur. J. Med. Chem. 44: 3280-3284.   DOI
11 Barradas D, Fernandez-Recio J. 2015. A comprehensive analysis of scoring functions for protein-protein docking. Protein Sci. 24: 250-251.
12 Tamagawa H, Oshima T, Yoshihara K, Watanabe T, Numata M, Yamamoto N, et al. 2012. The expression of the phosphatase regenerating liver 3 gene is associated with outcome in patients with colorectal cancer. Hepatogastroenterology 59: 2122-2126.
13 Vogt A, Tamewitz A, Skoko J, Sikorski RP, Giuliano KA, Lazo JS. 2005. The benzo[c] phenanthridine alkaloid, sanguinarine, is a selective, cell-active inhibitor of mitogenactivated protein kinase phosphatase-1. J. Biol. Chem. 280: 19078-19086.   DOI
14 Sotriffer C, Klebe G. 2002. Identification and mapping of small-molecule binding sites in proteins: computational tools for structure-based drug design. Farmaco 57: 243-251.   DOI
15 Moncho-Amor V, de Caceres II, Bandres E, Martinez- Poveda B, Orgaz JL, Sanchez-Perez I, et al. 2011. DUSP1/ MKP1 promotes angiogenesis, invasion and metastasis in non-small-cell lung cancer. Oncogene 30: 668-678.   DOI
16 Amor VM, de Caceres I, Bandres E, Orgaz JL, Sanchez- Perez I, Cuenca BJ, et al. 2008. Identification of DUSP1/ MKP1 mediated pathways in lung cancer progression. EJC Suppl. 6: 69-70.
17 Innocenti F, Sette M, Forte E, Lo Surdo P, Cerretani M, Altamura S, et al. 2004. PRL-3, a phosphatase implied in cancer metastasis: structure and function. Protein Sci. 13:127.
18 Al-Aidaroos AQO, Zeng Q. 2010. PRL-3 phosphatase and cancer metastasis. J. Cell. Biochem. 111: 1087-1098.   DOI
19 Zh ang J, X iao Z, L ai D , Sun J , He C , Chu Z, et al. 2012. miR-21, miR-17 and miR-19a induced by phosphatase of regenerating liver-3 promote the proliferation and metastasis of colon cancer. Br. J. Cancer 107: 352-359.   DOI
20 Park H, Chien PN, Ryu SE. 2012. Discovery of potent inhibitors of receptor protein tyrosine phosphatase sigma through the structure-based virtual screening. Bioorg. Med. Chem. Lett. 22: 6333-6337.   DOI
21 Sarvagalla S, Cheung CHA, Tsai JY, Hsieh HP, Coumar MS. 2016. Disruption of protein-protein interactions: hot spot detection, structure-based virtual screening and in vitro testing for the anti-cancer drug target survivin. RSC Adv. 6: 31947-31959.   DOI
22 Proschak E, Rupp M, Derksen S, Schneider G. 2008. Shapelets: possibilities and limitations of shape-based virtual screening. J. Comput. Chem. 29: 108-114.   DOI
23 Guerreiro PS, Estacio SG, Antunes F, Fernandes AS, Pinh eiro PF, Costa JG, et al. 2016. Structure-based virtual screening toward the discovery of novel inhibitors of the DNA repair activity of the human apurinic/apyrimidinic endonuclease 1. Chem. Biol. Drug Design 88: 915-925.   DOI
24 Hou XB, Li KS, Yu X, Sun JP, Fang H. 2015. Protein flexibility in docking-based virtual screening: discovery of novel lymphoid-specific tyrosine phosphatase inhibitors using multiple crystal structures. J. Chem. Inf. Model. 55: 1973-1983.   DOI
25 Zhang ZY. 2002. Protein tyrosine phosphatases: structure and function, substrate specificity, and inhibitor development. Annu. Rev. Pharmacol. Toxicol. 42: 209-234.   DOI
26 de Beer TAP, Berka K, Thornton JM, Laskowski RA. 2014. PDBsum additions. Nucleic Acids Res. 42: D292-D296.   DOI
27 Gopalakrishnan K, Sowmiya G, Sheik SS, Sekar K. 2007. Ramachandran plot on the web (2.0). Protein Pept. Lett. 14: 669-671.   DOI
28 Alonso A, Sasin J, Bottini N, Friedberg I, Friedberg I, Osterman A, et al. 2004. Protein tyrosine phosphatases in the human genome. Cell 117: 699-711.   DOI
29 Lin JS, Lu CW, Huang CJ, Wu PF, Robinson D, Kung HJ, et al. 1998. Protein-tyrosine kinase and protein-serine/ threonine kinase expression in human gastric cancer cell lines. J. Biomed. Sci. 5: 101-110.   DOI
30 Cousin C, Derouiche A, Shi L, Pagot Y, Poncet S, Mijakovic I. 2013. Protein-serine/threonine/tyrosine kinases in bacterial signaling and regulation. FEMS Microbiol. Lett. 346: 11-19.   DOI
31 Musharraf A, Markschies N, Imhof D, Englert C. 2006. Structural requirements of substrates for the PTP domain of Eya proteins. J. Pept. Sci. 12: 174-174.
32 Lazo JS, Aslan DC, Southwick EC, Cooley KA, Ducruet AP, Joo B, et al. 2001. Discovery and biological evaluation of a new family of potent inhibitors of the dual specificity protein phosphatase Cdc25. J. Med. Chem. 44: 4042-4049.   DOI
33 Monteiro-Cardoso VF, Oliveira MM, Melo T, Domingues MRM, Moreira PI, Ferreiro E, et al. 2015. Cardiolipin profile changes are associated to the early synaptic mitochondrial dysfunction in Alzheimer's disease. J. Alzheimers Dis. 43: 1375-1392.
34 Hinds PW. 2008. Too much of a good thing: the Prl-3 in p53's oyster. Mol. Cell 30: 260-261.   DOI
35 Kim KA, Song JS, Jee JG, Sheen MR, Lee C, Lee TG, et al. 2004. Structure of human PRL-3, the phosphatase associated with cancer metastasis. FEBS Lett. 565: 181-187.   DOI
36 Bardelli A, Saha S, Sager J A, Romans KE, X in BZ, Markowitz SD, et al. 2003. PRL-3 expression in metastatic cancers. Clin. Cancer Res. 9: 5607-5615.
37 Geng YX, Zhang LY, Sun YS, Zhang Y, Yang N, Wu JW. 2016. Research on ant colony algorithm optimization neural network weights blind equalization algorithm. Int. J. Secur. Appl. 10: 95-104.
38 Hsieh JH, Yin SY, Wang XS, Liu SB, Dokholyan NV, Tropsha A. 2010. Cheminformatics meets molecular mechanics: a combined application of knowledge-based pose scoring and physical force field-based hit scoring functions improves the accuracy of virtual screening. J. Chem. Inf. Model. 52: 16-28.
39 Yin S, Biedermannova L, Vondrasek J, Dokholyan NV. 2008. MedusaScore: an accurate force field-based scoring function for virtual drug screening. J. Chem. Inf. Model. 48: 1656-1662.   DOI
40 Li GB, Yang LL, Wang WJ, Li LL, Yang SY. 2013. ID-Score: a new empirical scoring function based on a comprehensive set of descriptors related to protein-ligand interactions. J. Chem. Inf. Model. 53: 592-600.   DOI
41 Korb O, Stutzle T, Exner TE. 2009. Empirical scoring functions for advanced protein-ligand docking with plants. J. Chem. Inf. Model. 49: 84-96.   DOI
42 Ahn JH, Kim SJ, Park WS, Cho SY, Ha JD, Kim SS, et al. 2006. Synthesis and biological evaluation of rhodanine derivatives as PRL-3 inhibitors. Bioorg. Med. Chem. Lett. 16: 2996-2999.   DOI
43 Hudaky P, Perczel A. 2005. Toward direct determination of conformations of protein building units from multidimensional NMR experiments. VI. Chemical shift analysis of his to gain 3D structure and protonation state information. J. Comput. Chem. 26: 1307-1317.   DOI
44 Demers JP, Chevelkov V, Lange A. 2011. Progress in correlation spectroscopy at ultra-fast magic-angle spinning: basic building blocks and complex experiments for the study of protein structure and dynamics. Solid State Nucl. Magn. Reson. 40: 101-113.   DOI
45 Zhu J, Cheng LP, Fang Q, Zhou ZH, Honig B. 2010. Building and refining protein models within cryo-electron microscopy density maps based on homology modeling and multiscale structure refinement. J. Mol. Biol. 397: 835-851.   DOI
46 Doughty-Shenton D, Joseph JD, Zhang J, Pagliarini DJ, Kim Y, Lu DH, et al. 2010. Pharmacological targeting of the mitochondrial phosphatase PTPMT1. J. Pharmacol. Exp. Ther. 333: 584-592.   DOI
47 Musumeci L, Kuijpers MJ, Gilio K, Hego A, Theatre E, Maurissen L, et al. 2015. Dual-specificity phosphatase 3 deficiency or inhibition limits platelet activation and arterial thrombosis. Circulation 131: 656-668.   DOI
48 Molina G, Vogt A, Bakan A, Dai WX, de Oliveira PQ, Znosko W, et al. 2009. Zebrafish chemical screening reveals an inhibitor of Dusp6 that expands cardiac cell lineages. Nat. Chem. Biol. 5: 680-687.   DOI
49 Urbanek RA, Suchard SJ, Steelman GB, Knappenberger KS, Sygowski LA, Veale CA, Chapdelaine MJ. 2001. Potent reversible inhibitors of the protein tyrosine phosphatase CD45. J. Med. Chem. 44: 1777-1793.   DOI
50 Lizunov AY, Gonchar AL, Zaitseva NI, Zosimov VV. 2015. Accounting for intraligand interactions in flexible ligand docking with a PMF-based scoring function. J. Chem. Inf. Model. 55: 2121-2137.   DOI
51 Kruger D M, G arzon JI, Ch acon P , Gohlke H. 2014. DrugScore(PPI) knowledge-based potentials used as scoring and objective function in protein-protein docking. PLoS One 9: e89466.   DOI
52 Ashtawy H M, Mahapatra NR. 2015. Mach ine-learning scoring functions for identifying native poses of ligands docked to known and novel proteins. BMC Bioinform. 16 Suppl 6: S3.
53 Ain QU, Aleksandrova A, Roessler FD, Ballester PJ. 2015. Machine-learning scoring functions to improve structurebased binding affinity prediction and virtual screening. WIREs Comput. Mol. Sci. 5: 405-424.   DOI
54 Ananthaswamy N, Rutledge R, Sauna ZE, Ambudkar SV, Dine E, Nelson E, et al. 2010. The signaling interface of the yeast multidrug transporter Pdr5 adopts a cis conformation, and there are functional overlap and equivalence of the deviant and canonical Q-loop residues. Biochemistry 49: 4440-4449.   DOI
55 Sheriff S, Beno BR, Zhai WX, Kostich WA, McDonnell PA, Kish K, et al. 2011. Small molecule receptor protein tyrosine phosphatase gamma (RPTP gamma) ligands that inhibit phosphatase activity via perturbation of the tryptophan-proline-aspartate (WPD) loop. J. Med. Chem. 54: 6548-6562.   DOI
56 Tailor P, Gilman J, Williams S, Mustelin T. 1999. A novel isoform of the low molecular weight phosphotyrosine phosphatase, LMPTP-C, arising from alternative mRNA splicing. Eur. J. Biochem. 262: 277-282.   DOI
57 Dong O, Heul AV, Welsh MJ, Randak CO. 2012. The conserved Q-loop glutamine 1291 interacts with Ap(5)A. Pediatr. Pulm. 47: 240.   DOI
58 Sharma B, Kaushik N, Upadhyay A, Tripathi S, Singh K, Pandey VN. 2003. A positively charged side chain at position 154 on the beta 8-alpha E loop of HIV-1 RT is required for stable ternary complex formation. Nucleic Acids Res. 31: 5167-5174.   DOI
59 Wei RR, Rich ardson JP. 2001. Mutational changes of conserved residues in the Q-loop region of transcription factor Rho greatly reduce secondary site RNA-binding. J. Mol. Biol. 314: 1007-1015.   DOI
60 Martell KJ, Angelotti T, Ullrich A. 1998. The "VH1-like" dual-specificity protein tyrosine phosphatases. Mol. Cells 8: 2-11.
61 Brandao TAS, Johnson SJ, Hengge AC. 2012. The molecular details of WPD-loop movement differ in the proteintyrosine phosphatases YopH and PTP1B. Arch. Biochem. Biophys. 525: 53-59.   DOI
62 Takahashi H, Craig AM. 2013. Protein tyrosine phosphatases PTP delta, PTP sigma, and LAR: presynaptic hubs for synapse organization. Trends Neurosci. 36: 522-534.   DOI
63 Kontaridis. 2008. Deletion of Ptpn11 (Shp2) in cardiomyocytes causes dilated cardiomyopathy via effects on the extracellular signal-regulated kinase/mitogen-activated protein kinase and RhoA signaling pathways. Circulation 117: 1423-1435.   DOI
64 Seo JH, Lee GS, Kim J, Cho BK, Joo K, Lee J, Kim BG. 2009. Automatic protein structure prediction system enabling rapid and accurate model building for enzyme screening. Enzyme Microb. Technol. 45: 218-225.   DOI
65 Tsai CJ, Ma B, Sham YY, Kumar S, Wolfson HJ, Nussinov R. 2001. A hierarchial, building-block-based computational scheme for protein structure prediction. IBM J. Res. Dev. 45: 513-523.   DOI
66 Ul-Haq Z, Saeed M, Halim SA, Khan W. 2015. 3D structure prediction of human beta 1-adrenergic receptor via threading-based homology modeling for implications in structure-based drug designing. PLoS One 10: e0122223.   DOI
67 Danishuddin M, Khan A, Faheem M, Kalaiarasan P, Baig MH, Subbarao N, Khan AU. 2014. Structure-based screening of inhibitors against KPC-2: designing potential drug candidates against multidrug-resistant bacteria. J. Biomol. Struct. Dyn. 32: 741-750.   DOI
68 Bard-Chapeau EA, Li SW, Ding J, Zhang SS, Zhu HH, Princen F, et al. 2011. Ptpn11/Sh p2 acts as a tumor suppressor in hepatocellular carcinogenesis. Cancer Cell 19: 629-639.   DOI
69 Song YS, Lee HJ, Prosselkov P, Itohara S, Kim E. 2013. Trans-induced cis interaction in the tripartite NGL-1, netrin-G1 and LAR adhesion complex promotes development of excitatory synapses. J. Cell Sci. 126: 4926-4938.   DOI
70 Faux C, Hawadle M, Nixon J, Wallace A, Lee S, Murray S, Stoker A. 2007. PTP s igma b inds a nd d eph osphorylates neurotrophin receptors and can suppress NGF-dependent neurite outgrowth from sensory neurons. Biochim. Biophys. Acta 1773: 1689-1700.   DOI
71 Takahashi H, Arstikaitis P, Prasad T, Bartlett TE, Wang YT, Murphy TH, Craig AM. 2011. Postsynaptic TrkC and presynaptic PTP sigma function as a bidirectional excitatory synaptic organizing complex. Neuron 69: 287-303.   DOI
72 Horvat-Broecker A, Reinhard J, Illes S, Paech T, Zoidl G, Harroch S, et al. 2008. Receptor protein tyrosine phosphatases are expressed by cycling retinal progenitor cells and involved in neuronal development of mouse retina. Neuroscience 152: 618-645.   DOI
73 Chagnon MJ, Wu CL, Nakazawa T, Yamamoto T, Noda M, Blanchetot C, Tremblay ML. 2010. Receptor tyrosine phosphatase sigma (RPTP sigma) regulates, p250GAP, a novel substrate that attenuates Rac signaling. Cell. Signal. 22: 1626-1633.   DOI
74 Xiao JY, Engel JL, Zhang J, Chen MJ, Manning G, Dixon JE. 2011. Structural and functional analysis of PTPMT1, a phosphatase required for cardiolipin synthesis. Proc. Natl. Acad. Sci. USA 108: 11860-11865.   DOI
75 Chicco AJ, Sparagna GC. 2007. Role of cardiolipin alterations in mitochondrial dysfunction and disease. Am. J. Physiol. Cell Physiol. 292: C33-C44.   DOI
76 Niemi NM, Lanning NJ, Westrate LM, MacKeigan JP. 2013. Downregulation of the mitochondrial phosphatase PTPMT1 is sufficient to promote cancer cell death. PLoS One 8: e53803.   DOI
77 El-Kouhen K, Tremblay ML. 2011. PTPMT1: connecting cardiolipin biosynthesis to mitochondrial function. Cell Metab. 13: 615-617.   DOI
78 Park H, Kim SY, Kyung A, Yoon TS, Ryu SE, Jeong DG. 2012. Structure-based virtual screening approach to the discovery of novel PTPMT1 phosphatase inhibitors. Bioorg. Med. Chem. Lett. 22: 1271-1275.   DOI
79 Nath AK, Ryu JH, J in YN, Roberts LD, Dejam A, Gerszten RE, Peterson RT. 2015. PTPMT1 inhibition lowers glucose through succinate dehydrogenase phosphorylation. Cell Rep. 10: 694-701.   DOI
80 Ye Z, Kadolph C, Strenn R, Wall D, McPherson E, Lin S. 2016. WHATIF: an open-source desktop application for extraction and management of the incidental findings from next-generation sequencing variant data. Comput. Biol. Med. 68: 165-169.   DOI
81 Zhang YM, Zhang DF, Tian HZ, Jiao Y, Shi ZH, Ran T, et al. 2016. Identification of covalent binding sites targeting cysteines based on computational approaches. Mol. Pharm. 13: 3106-3118.   DOI
82 Tonks NK. 2013. Protein tyrosine phosphatases - from housekeeping enzymes to master regulators of signal transduction. FEBS J. 280: 346-378.   DOI
83 Seco J, Luque FJ, Barril X. 2009. Binding site detection and druggability index from first principles. J. Med. Chem. 52: 2363-2371.   DOI
84 Dundas J, Ouyang Z, Tseng J, Binkowski A, Turpaz Y, Liang J. 2006. CASTp: computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues. Nucleic Acids Res. 34: W116-W118.   DOI
85 Huang BD. 2009. MetaPocket: a meta approach to improve protein ligand binding site prediction. Omics 13: 325-330.   DOI
86 Laurie ATR, Jackson RM. 2005. Q-SiteFinder: an energybased method for the prediction of protein-ligand binding sites. Bioinformatics 21: 1908-1916.   DOI
87 Nogara PA, Saraiva RD, Bueno DC, Lissner LJ, Dalla Corte CL, Braga MM, et al. 2015. Virtual screening of acetylcholinesterase inhibitors using the Lipinski's rule of five and zinc databank. Biomed. Res. Int. 2015: 870389.
88 Kesharwani RK, Singh DV, Misra K. 2013. Computationbased virtual screening for designing novel antimalarial drugs by targeting falcipain-III: a structure-based drug designing approach. J. Vector Dis. 50: 93-102.
89 Li LW, Dixon JE. 2000. Form, function, and regulation of protein tyrosine phosphatases and their involvement in human diseases. Semin. Immunol. 12: 75-84.   DOI
90 Zhang W, Li RB, Shin R, Wang YM, Padmalayam I, Zhai L, Krishna NR. 2013. Identification of the binding site of an allosteric ligand using STD-NMR, docking, and CORCEMAST calculations. Chemmedchem 8: 1629-1633.
91 Somvanshi P, Seth PK. 2009. Targeting the peptide deformylase of Salmonella enterica for virtual screening and structure based drug designing. New Biotechnol. 25: S366.
92 Balajee R, Dhanarajan MS. 2009. Mining the information for structure based drug designing by relational database management notion. E. J. Chem. 6: 1047-1054.   DOI
93 Ding HY, Zhang Y, Xu C, Hou DX, Li J, Zhang YJ, et al. 2014. Norathyriol reverses obesity- and high-fat-dietinduced insulin resistance in mice through inhibition of PTP1B. Diabetologia 57: 2145-2154.   DOI
94 Vercauteren M, Gomez E, Hooft R, Bombrun A, Mulder P, Thuillez C, Richard V. 2008. PTP1B: a new target for the treatment of the endothelial dysfunction in obesity and diabetes. J. Hypertens. 26: S367.
95 Andersen JN, Mortensen OH, Peters GH, Drake PG, Iversen LF, Olsen OH, et al. 2001. Structural and evolutionary relationships among protein tyrosine phosphatase domains. Mol. Cell. Biol. 21: 7117-7136.   DOI
96 Wang W, Liu LJ, Song X, Mo Y, Komma C, Bellamy HD, et al. 2011. Crystal structure of human protein tyrosine phosphatase SHP-1 in the open conformation. J. Cell. Biochem. 112: 2062-2071.   DOI
97 Xiao P, Wang X, Wang HM, Fu XL, Cui FA, Yu X, et al. 2014. The second-sphere residue T263 is important for the function and catalytic activity of PTP1B via interaction with the WPD-loop. Int. J. Biochem. Cell. Biol. 57: 84-95.   DOI
98 Claypool SM, Koehler CM. 2012. The complexity of cardiolipin in health and disease. Trends Biochem. Sci. 37: 32-41.   DOI
99 Irwin JJ, Sh oichet BK. 2005. ZINC - a free database of commercially available compounds for virtual screening. J. Chem. Inf. Model. 45: 177-182.   DOI
100 Wishart DS, Knox C, Guo AC, Shrivastava S, Hassanali M, Stothard P, et al. 2006. DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res. 34: D668-D672.   DOI
101 Rettenmaier TJ, Sadowsky JD, Thomsen ND, Chen SC, Doak AK, Arkin MR, Wells JA. 2014. A small-molecule mimic of a peptide docking motif inhibits the protein kinase PDK1. Proc. Natl. Acad. Sci. USA 111: 18590-18595.   DOI
102 Lee JY, Jung KW, Woo ER, Kim Y. 2008. Docking study of biflavonoids, allosteric inhibitors of protein tyrosine phosphatase 1B. Bull. Korean Chem. Soc. 29: 1479-1484.   DOI
103 Hansen SK, Cancilla MT, Shiau TP, Kung J, Chen T, Erlanson DA. 2005. Allosteric inhibition of PTP1B activity by selective modification of a non-active site cysteine residue. Biochemistry 44: 7704-7712.   DOI
104 Perron MD, Chowdhury S, Aubry I, Purisima E, Tremblay ML, Saragovi HU. 2014. Allosteric noncompetitive small molecule selective inhibitors of CD45 tyrosine phosphatase suppress T-cell receptor signals and inflammation in vivo. Mol. Pharmacol. 85: 553-563.   DOI
105 Zinker B, Xie N, Clampit J, Nguyen P, Wilcox D, Jacobson P, et al. 2001. Anti-diabetic effects of protein tyrosine phosphatase 1B (PTP1B) antisense treatment in a rodent model of diabetes: potential therapeutic benefit. Diabetes 50: A332.
106 Ostensen CG, Sandberg-Nordqvist AC, Chen J, Hallbrink M, Rotin D, Langel U, Efendic S. 2002. Overexpression of protein-tyrosine phosphatase PTP sigma is linked to impaired glucose-induced insulin secretion in hereditary diabetic Goto-Kakizaki rats. Biochem. Biophys. Res. Commun. 291: 945-950.   DOI
107 Scott LM, Lawrence HR, Sebti SM, Lawrence NJ, Wu J. 2010. Targeting protein tyrosine phosphatases for anticancer drug discovery. Curr. Pharm. Design 16: 1843-1862.   DOI
108 Feng Y, Hadjikyriacou A, Clarke SG. 2014. Substrate specificity of human protein arginine methyltransferase 7 (PRMT7) the importance of acidic residues in the double E loop. J. Biol. Chem. 289: 32604-32616.   DOI
109 Singh M, Satoh K. 2003. Site-specific mutations localized in the D-E loop of the D1 protein of photosystem II affect phototolerance in Synechocystis sp. PCC 6803 containing psbAII gene. Ind. J. Biochem. Bio. 40: 108-113.
110 Saito H. 2004. Structure and function of protein tyrosine phosphatases. J. Pharmacol. Sci. 94: 14.
111 DeGnore JP, Konig S, Barrett WC, Chock PB, Fales HM. 1998. Identification of the oxidation states of the active site cysteine in a recombinant protein tyrosine phosphatase by electrospray mass spectrometry using on-line desalting. Rapid Commun. Mass Spectrom. 12: 1457-1462.   DOI
112 Tonks NK. 1998. From structure to function of protein tyrosine phosphatases. Naunyn Schmiedebergs Arch. Pharmacol. 358: R377.
113 Lee H, Yi JS, Lawan A, Min K, Bennett AM. 2015. Mining the function of protein tyrosine phosphatases in health and disease. Semin. Cell Dev. Biol. 37: 66-72.   DOI
114 Zhang ZY. 1998. Protein-tyrosine phosphatases: biological function, structural characteristics, and mechanism of catalysis. Crit. Rev. Biochem. Mol. Biol. 33: 1-52.   DOI
115 Stockman BJ. 1998. NMR spectroscopy as a tool for structure-based drug design. Prog. Nucl. Magn. Reson. Spectrosc. 33: 109-151.   DOI
116 Stafford JA. 2003. Use of high-throughput nanovolume crystallization in structure-based drug design. Abstr. Pap. Am. Chem. Soc. 226: U460-U461.
117 Draetta G, Donzelli M, Squatrito M, Ganoth D, Hershko A, Pagano M. 2002. CDC25 phosphatases and checkpoint controls. Eur. J. Cancer 38: S116.
118 Nguyen PH, Zhao BT, Ali MY, Choi JS, Rhyu DY, Min BS, Woo MH. 2015. Insulin-mimetic selaginellins from Selaginella tamariscina with protein tyrosine phosphatase 1B (PTP1B) inhibitory activity. J. Nat. Prod. 78: 34-42.   DOI
119 Bulavin DV, Higashimoto Y, Demidenko ZN, Meek S, Graves P, Phillips C, et al. 2003. Dual phosph orylation controls Cdc25 phosphatases and mitotic entry. Nat. Cell Biol. 5: 545-551.   DOI
120 Davezac N, Ducommun B, Baldin V. 2000. Involvment of CDC25 phosphatases in growth control. Pathol. Biol. 48: 182-189.
121 Vincent I, Bu B, Hudson K, Husseman J, Nochlin D, Jin LW. 2001. Constitutive Cdc25B tyrosine phosphatase activity in adult brain neurons with M phase-type alterations in Alzheimer's disease. Neuroscience 105: 639-650.   DOI
122 Astuti P, Pike T, Widberg C, Payne E, Harding A, Hancock J, Gabrielli B. 2009. MAPK pathway activation delays G(2)/M progression by destabilizing Cdc25B. J. Biol. Chem. 284: 33781-33788.   DOI
123 Geetha N, Mihaly J, Stockenhuber A, Blasi F, Uhrin P, Binder BR, et al. 2011. Signal integration and coincidence detection in the mitogen-activated protein kinase/ extracellular signal-regulated kinase (ERK) cascade: concomitant activation of receptor tyrosine kinases and of LRP-1 leads to sustained ERK phosphorylation via downregulation of dual specificity phosphatases (DUSP1 and -6). J. Biol. Chem. 286: 25663-25674.   DOI
124 Khor GH, Froemming GRA, Zain RB, Abraham MT, Omar E, Tan SK, et al. 2013. DNA methylation profiling revealed promoter hypermethylation-induced silencing of p16, DDAH2 and DUSP1 in primary oral squamous cell carcinoma. Int. J. Med. Sci. 10: 1727-1739.
125 Lang BT, Cregg JM, DePaul MA, Tran AP, Xu K, Dyck SM, et al. 2015. Modulation of the proteoglycan receptor PTP sigma promotes recovery after spinal cord injury. Nature 518: 404-408.   DOI
126 Byrum CA, Walton KD, Robertson AJ, Carbonneau S, Thomason RT, Coffman JA, McClay DR. 2006. Protein tyrosine and serine-threonine phosphatases in the sea urchin, Strongylocentrotus purpuratus: identification and potential functions. Dev. Biol. 300: 194-218.   DOI
127 Dudits D. 2004. Protein phosphorylation as key control mechanism in plant cell division. Acta Physiol. Plant. 26: 4.
128 Leung KT, Li KKH, Sun SSM, Chan PKS, Ooi VEC, Chiu LCM. 2008. Activation of the JNK pathway promotes phosphorylation and degradation of Bim(EL) - a novel mechanism of chemoresistance in T-cell acute lymphoblastic leukemia. Carcinogenesis 29: 544-551.
129 Sharma K, D'Souza RCJ, Tyanova S, Schaab C, Wisniewski JR, Cox J, Mann M. 2014. Ultradeep human phosphoproteome reveals a distinct regulatory nature of Tyr and Ser/Thrbased signaling. Cell Rep. 8: 1583-1594.   DOI
130 Macho AP, Lozano-Duran R, Zipfel C. 2015. Importance of tyrosine phosphorylation in receptor kinase complexes. Trends Plant Sci. 20: 269-272.   DOI
131 Derrien A, Druey K. 2000. Importance of tyrosine phosphorylation of RGS16 in the inhibition of G-proteincoupled MAP kinase stimulation. J. Allergy Clin. Immun. 105: S172-S173.
132 Morimura T, Ogawa M. 2009. Relative importance of the tyrosine phosphorylation sites of Disabled-1 to the transmission of Reelin signaling. Brain Res. 1304: 26-37.   DOI
133 Jung KJ, Lee EK, Yu BP, Chung HY. 2009. Significance of protein tyrosine kinase/protein tyrosine phosphatase balance in the regulation of NF-kappa B signaling in the inflammatory process and aging. Free Radic. Biol. Med. 47: 983-991.   DOI
134 Ten Eyck LF, Taylor SS, Kornev AP. 2008. Conserved spatial patterns across the protein kinase family. Biochim. Biophys. Acta 1784: 238-243.   DOI
135 Zhang XC, Lavoie G, Fort L, Huttlin EL, Tcherkezian J, Galan JA, et al. 2013. Gab2 phosphorylation by RSK inhibits Shp2 recruitment and cell motility. Mol. Cell. Biol. 33: 1657-1670.   DOI
136 Tonks N K, M uth uswamy S K. 2007. A brake becomes an accelerator: PTP1B - a new therapeutic target for breast cancer. Cancer Cell 11: 214-216.   DOI
137 Cortesio CL, Chan KT, Perrin BJ, Burton NO, Zhang S, Zhang ZY, Huttenlocher A. 2008. Calpain 2 and PTP1B function in a novel pathway with Src to regulate invadopodia dynamics and breast cancer cell invasion. J. Cell Biol. 180: 957-971.   DOI
138 Oishi K, Tartaglia M, Lieb ME, Pick L, Gelb BD. 2004. Noonan syndrome-causative gain-of-function mutations in PTPN11 result in wing abnormalities and embryonic lethality in Drosophila. Pediatr. Res. 55: 270a.
139 Bentires-Alj M, Paez JG, David FS, Keilhack H, Halmos B, Naoki K, et al. 2004. Activating mutations of the Noonan syndrome-associated SHP2/PTPN11 gene in human solid tumors and adult acute myelogenous leukemia. Cancer Res. 64: 8816-8820.   DOI
140 Cazzaniga G, Martinelli S, den Boer ML, Corral L, Spinelli M, Basso G, et al. 2004. PTPN11 and RAS gene mutation pattern identifies an unique feature of upregulated RAS function in infant ALL. Blood 104: 996.
141 Gui Q, Zhang X, Xu L, Cheng HQ, Ke YH. 2013. Disruption of Shp2 tyrosine phosphatase promotes Hes1/ Stat3 complex in intestinal epithelia, contributing to enhanced self-renewal capacity and impaired differentiation in the crypt niche. FASEB J. 27: S1159.1.
142 Bajusz D, Ferenczy GG, Keseru GM. 2015. Property-based characterization of kinase-like ligand space for library design and virtual screening. Medchemcomm 6: 1898-1904.   DOI
143 Ren LG, Chen XW, Luechapanichkul R, Selner NG, Meyer TM, Wavreille AS, et al. 2011. Substrate specificity of protein tyrosine phosphatases 1B, RPTP alpha, SHP-1, and SHP-2. Biochemistry 50: 2339-2356.   DOI
144 Congreve M, Carr R, Murray C, Jhoti H. 2003. A rule of three for fragment-based lead discovery? Drug Discov. Today 8: 876-877.
145 Black E, Breed J, Breeze AL, Embrey K, Garcia R, Gero TW, et al. 2005. Structure-based design of protein tyrosine phosphatase-1B inhibitors. Bioorg. Med. Chem. Lett. 15: 2503-2507.   DOI
146 Lim-Wilby M, Srinivasan J, Koska J, Krammer A, Venkatachalam CM, Waldman M. 2004. Automated de novo design with LUDI, minimizer, QSAR, and scoring functions: development and validation of autoLUDI. Abstr. Pap. Am. Chem. Soc. 228: U509.
147 Yuan YX, Pei JF, Lai LH. 2011. LigBuilder 2: a practical de novo drug design approach. J. Chem. Inf. Model. 51: 1083- 1091.   DOI
148 Osterberg F, Morris GM, Sanner MF, Olson AJ, Goodsell DS. 2002. Automated docking to multiple target structures: Incorporation of protein mobility and structural water heterogeneity in AutoDock. Proteins 46: 34-40.   DOI
149 Hashimoto Y, Kohri K, Tsai MJ. 2003. Overexpression of Cdc25B, an androgen-receptor coactivator, in human prostate cancer. J. Urol. 169: 84-85.
150 Lauriol J, Jaffre F, Kontaridis MI. 2015. The role of the protein tyrosine phosphatase SHP2 in cardiac development and disease. Semin. Cell Dev. Biol. 37: 73-81.   DOI
151 Wang Z , Cai SR, He YL, Z h an WH, Z hang CH, Wu H , et al. 2009. Elevated PRL-3 expression was more frequently detected in the large primary gastric cancer and exhibits a poor prognostic impact on the patients. J. Cancer Res. Clin. Oncol. 135: 1041-1046.   DOI
152 Krishnan N, Koveal D, Miller DH, Xue B , Aksh inthala SD, Kragelj J, et al. 2014. Targeting the disordered C terminus of PTP1B with an allosteric inhibitor. Nat. Chem. Biol. 10: 558-566.   DOI
153 Chen LW, Sung SS, Yip MLR, Lawrence HR, Ren Y, Guida WC, et al. 2006. Discovery of a novel Shp2 protein tyrosine phosphatase inhibitor. Mol. Pharmacol. 70: 562-570.   DOI
154 Chio CM, Lim CS, Bishop AC. 2015. Targeting a cryptic allosteric site for selective inhibition of the oncogenic protein tyrosine phosphatase Shp2. Biochemistry 54: 497-504.   DOI
155 Martin KR, Narang P, Xu Y, Kauffman AL, Petit J, Xu HE, et al. 2012. Identification of small molecule inhibitors of PTPs through an integrative virtual and biochemical approach. PLoS One 7: e50217.   DOI
156 Lazo J S, A slan DC, S outh wick EC, Cooley K A, D ucruet AP, Joo B, et al. 2001. Discovery and biological evaluation of a new family of potent inhibitors of the dual specificity protein phosphatase Cdc25. J. Med. Chem. 44: 4042-4049.   DOI