• Title/Summary/Keyword: protein expression analysis

Search Result 2,823, Processing Time 0.037 seconds

Development of Marker-free Transgenic Rice for Increasing Bread-making Quality using Wheat High Molecular Weight Glutenin Subunits (HMW-GS) Gene (밀 고분자 글루테닌 유전자를 이용하여 빵 가공적성 증진을 위한 마커 프리 형질전환 벼의 개발)

  • Park, Soo-Kwon;Shin, DongJin;Hwang, Woon-Ha;Oh, Se-Yun;Cho, Jun-Hyun;Han, Sang-Ik;Nam, Min-Hee;Park, Dong-Soo
    • Journal of Life Science
    • /
    • v.23 no.11
    • /
    • pp.1317-1324
    • /
    • 2013
  • High-molecular weight glutenin subunits (HMW-GS) have been shown to play a crucial role in determining the processing properties of the wheat grain. We have produced marker-free transgenic rice plants containing a wheat Glu-1Bx7 gene encoding the HMG-GS from the Korean wheat cultivar 'Jokyeong' using the Agrobacterium-mediated co-transformation method. The Glu-1Bx7-own promoter was inserted into a binary vector for seed-specific expression of the Glu-1Bx7 gene. Two expression cassettes comprised of separate DNA fragments containing only Glu-1Bx7 and hygromycin phosphotransferase II (HPTII) resistance genes were introduced separately to the Agrobacterium tumefaciens EHA105 strain for co-infection. Each EHA105 strain harboring Glu-1Bx7 or HPTII was infected to rice calli at a 3:1 ratio of Glu-1Bx7 and HPTII, respectively. Then, among 216 hygromycin-resistant $T_0$ plants, we obtained 24 transgenic lines with both Glu-1Bx7 and HPTII genes inserted into the rice genome. We reconfirmed integration of the Glu-1Bx7 gene into the rice genome by Southern blot analysis. Transcripts and proteins of the wheat Glu-1Bx7 were stably expressed in the rice $T_1$ seeds. Finally, the marker-free plants harboring only the Glu-1Bx7 gene were successfully screened at the $T_1$ generation.

Effect of the Flavonoid Luteolin for Dextran Sodium Sulfate-induced Colitis in NF-${\kappa}B^{EGFP}$ Transgenic Mice (Dextran Sodium Sulfate 유발 장염 모델에서 루테올린의 치료효과)

  • Jang, Byung-Ik
    • Journal of Yeungnam Medical Science
    • /
    • v.23 no.1
    • /
    • pp.26-35
    • /
    • 2006
  • Background: Luteolin, a flavone found in various Chinese herbal medicines is known to possess anti-inflammatory properties through its ability to inhibit various proinflammatory signaling pathways including NF-${\kappa}B$ and p38 MAPK. In this study, we investigated the potential therapeutic effect of luteolin on dextran sodium sulfate (DSS)-induced colitis. Materials and Methods: We used a transgenic mouse model expressing the enhanced green fluorescent protein (EGFP) under the transcriptional control of NF-${\kappa}B$ $cis$-elements. C57BL/6 NF-${\kappa}B^{EGFP}$ mice received 2.5% DSS in their drinking water for six days in combination with daily luteolin administration (1mg/kg body weight, 0.1ml vol, intragastric) or vehicle. NF-${\kappa}B$ activity was assessed macroscopically with a Charge-Coupled Device (CCD) camera and microscopically by confocal analysis. Results: A significant increase in the Disease Activity Index (DAI), histological score (p<0.05), IL-12 p40 secretion in colonic stripe culture (p<0.05) and EGFP expression was observed in luteolin and/or DSS-treated mice compared to water-treated mice. Interestingly, a trend toward a worse colitis (DAI, IL-12p40) was observed in luteolin-treated mice compared to non-treated DSS-exposed mice. In addition, EGFP expression (NF-${\kappa}B$ activity) strongly increased in the luteolin-treated mice compared to control mice. Confocal microscopy showed that EGFP positive cells were primarily lamina propria immune cells. Conclusions: These results suggest that luteolin is not a therapeutic alternative for intestinal inflammatory disorders derived for primary defects in barrier function. Thus, therapeutic intervention targeting these signaling pathways should be viewed with caution.

  • PDF

Effects of Bisphenol A on the Placental Function and Reproduction in Rats (Bisphenol A가 흰쥐의 태반 기능과 출산에 미치는 영향)

  • Lee, Chae-Kwan;Kim, Seog-Hyun;Moon, Deog-Hwan;Kim, Jeong-Ho;Son, Byung-Chul;Kim, Dae-Hwan;Lee, Chang-Hee;Kim, Hwi-Dong;Kim, Jung-Won;Kim, Jong-Eun;Lee, Chae-Un
    • Journal of Preventive Medicine and Public Health
    • /
    • v.38 no.3
    • /
    • pp.330-336
    • /
    • 2005
  • Objectives : The aim of this study was to investigate the effects of bisphenol A (BPA), an estrogen-like environmental endocrine disrupter, on the placental function and reproduction in rats. The mRNA levels of the placental prolactin-growth hormone(PRL-GH) gene family, placental trophoblast cell frequency and reproductive data were analyzed. Methods : The pregnancies of F344 Fisher rats ($160g{\pm}20g$) were detected by the presence of the copulatory plug or sperm in the vaginal smear, which marked Day 0 of pregnancy. Pregnant rats were divided into three groups. The control group was intraperitoneally injected with a sesame oil vehicle. The two remaining groups were injected with 50 or 500 mg/kg B.W/day of BPA, resuspended in sesame oil, on either days 7 to 11 or 16 to 20 of pregnancy, with the rats sacrificed on either day 11 or 20, respectively. The mRNA levels of PRL-GH and Pit-1a and b isotype genes were analyzed by Northern blot hybridization and reverse transcription-polymerase chain reaction. The hormone concentrations were analyzed by radioimmunoassay, and the frequency of the placental trophoblast cells observed by a histochemical study. Reproductive data, such as the placental weight and litter size, were surveyed on day 20. The fetal weight was surveyed for 4 weeks after birth. A statistical analysis was carried out using the SAS program (version 8.1). Results : The mRNA levels of the PRL-GH gene family, such as placental lactogen I, Iv and II, prolactin like protein A, C and Cv, and decidual prolactin-related protein were significantly reduced due to BPA exposure. The mRNA levels of the Pit-1a and b isotype genes, which induce the expression of the PRL-GH gene family in the rat placenta, were also reduced due to BPA exposure. The PL-Iv and PL-II concentrations were reduced in the BPA exposed group. During the middle to last stage of pregnancy (Days 11-20), a high dose of BPA exposure reduced the frequency of spongiotrophoblast cells, which are responsible for the secretion of the PRL-GH hormones. Reproductive data, such as the placental and fetal weights and the litter size, were reduced, but that of the pregnancy period was extended in the BPA exposed compared to the control group. Conclusions : BPA disrupts the placental functions in rats, which leads to reproductive disorders.

Anti-inflammatory effect potentials of ethanol extracts from fermentated Caryopteris incana by Lactobacillus plantarum on induced to LPS with Raw 264.7 cell (LPS로 유도된 Raw 264.7 cell에서 Lactobacillus plantarum 발효가 층꽃나무(Caryopteris incana) 에탄올 추출물의 염증반응에 미치는 영향)

  • Park, Mi-Jeong;Park, Hye-Jin;Lee, Eun-Ho;Jung, Hee-Young;Cho, Young-Je
    • Journal of Applied Biological Chemistry
    • /
    • v.61 no.2
    • /
    • pp.141-150
    • /
    • 2018
  • In this study, the inflammation of ethanol extracts from Caryopteris incana (CI) and fermented C. incana (FCI) on induced to lipopolysaccharide with Raw 264.7 cell was tested. The composition profile of L. plantarum was changed by fermentation, and confirmed by HPLC analysis. We performed the 3-[4,5-dimethylthiazol]-2-yl]-2,5-diphenyltetrazolium bromide assay to evaluate the toxicity of CI and FCI extracts. In cell viability, cell toxicity was not shown at 5, 10 and $15{\mu}g/mL$ of CI extracts and 10, 20, 30 and $40{\mu}g/mL$ of FCI extracts. The results of inducible nitric oxide synthase and cyclooxygenase-2 protein production were confirmed to be inhibitory in a concentration-dependent manner, respectively. Additionally, protein expression of nitric oxide and prostaglandin $E_2$ by CI and FCI extracts were also inhibited in a concentration-dependent manner. In the result of pro-inflammatory cytokine, $15{\mu}g/mL$ concentration of CI extracts was showed tumar necrosis factor $(TNF)-{\alpha}$ (57.3%), interleukin (IL)-6 (35.2%), and $IL-1{\beta}$ (48.0%), respectively. And $40{\mu}g/mL$ of FCI extracts was showed $TNF-{\alpha}$ (34.6%), IL-6 (32.1%), and $IL-1{\beta}$ (30.0%), respectively. These results suggest that FCI extracts showed better effect of anti-inflammatory than CI extracts. Therefore, it was found that both CI and FCI can be used as an excellent material for the development of new anti-inflammatory resource.

The Anti-inflammatory Effect of Skipjack Tuna (Katsuwonus pelamis) Oil in LPS-induced RAW 264.7 Cells and Mouse Models (LPS 유도 RAW 264.7 세포와 마우스 모델에서 참치(Katsuwonus pelamis) 유의 항염증 효과)

  • Kang, Bo-Kyeong;Kim, Min-Ji;Kim, Koth-Bong-Woo-Ri;Ahn, Na-Kyung;Choi, Yeon-Uk;Bark, Si-Woo;Pak, Won-Min;Kim, Bo-Ram;Park, Ji-Hye;Bae, Nan-Young;Ahn, Dong-Hyun
    • Microbiology and Biotechnology Letters
    • /
    • v.43 no.1
    • /
    • pp.45-55
    • /
    • 2015
  • This study was carried out to demonstrate the anti-inflammatory effect of tuna oil (TO) using LPS-induced inflammation responses and mouse models. First, nitric oxide (NO) and pro-inflammatory cytokines levels were suppressed up to 50% with increasing concentrations of TO without causing any cytotoxicity. Also, the expression of a variety of proteins, such as inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) and nuclear factor kappa B (NF-κB), was suppressed in a dosedependent manner by treatment with TO. Furthermore, TO also inhibited the phosphorylation of mitogen-activated protein kinases (MAPKs), including c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase (ERK), and p38 protein kinase (p38). Moreover, in in vivo testing the formation of ear edema was reduced at the highest dose tested compared to that in the control, and a reduction of ear thickness and the number of mast cells was observed in histological analysis. In acute toxicity test, no mortalities occurred in mice administrated 5,000 mg/kg body weight of TO over a two-week observation period. Our results suggest that TO has a considerable anti-inflammatory property through the suppression of inflammatory mediator productions and that it could prove to be useful as a potential anti-inflammatory therapeutic material.

Development of Marker-free TaGlu-Ax1 Transgenic Rice Harboring a Wheat High-molecular-weight Glutenin Subunit (HMW-GS) Protein (벼에서 밀 고분자 글루테닌 단백질(TaGlu-Ax1) 발현을 통하여 쌀가루 가공적성 증진을 위한 마커프리(marker-free) 형질전환 벼의 개발)

  • Jeong, Namhee;Jeon, Seung-Ho;Kim, Dool-Yi;Lee, Choonseok;Ok, Hyun-Choong;Park, Ki-Do;Hong, Ha-Cheol;Lee, Seung-Sik;Moon, Jung-Kyung;Park, Soo-Kwon
    • Journal of Life Science
    • /
    • v.26 no.10
    • /
    • pp.1121-1129
    • /
    • 2016
  • High-molecular-weight glutenin subunits (HMW-GSs) are extremely important determinants of the functional properties of wheat dough. Transgenic rice plants containing a wheat TaGlu-Ax1 gene encoding a HMG-GS were produced from the Korean wheat cultivar ‘Jokyeong’ and used to enhance the bread-making quality of rice dough using the Agrobacterium-mediated co-transformation method. Two expression cassettes with separate DNA fragments containing only TaGlu-Ax1 and hygromycin phosphotransferase II (HPTII) resistance genes were introduced separately into the Agrobacterium tumefaciens EHA105 strain for co-infection. Rice calli were infected with each EHA105 strain harboring TaGlu-Ax1 or HPTII at a 3:1 ratio of TaGlu-Ax1 and HPTII. Among 210 hygromycin-resistant T0 plants, 20 transgenic lines harboring both the TaGlu-Ax1 and HPTII genes in the rice genome were obtained. The integration of the TaGlu-Ax1 gene into the rice genome was reconfirmed by Southern blot analysis. The transcripts and proteins of the wheat TaGlu-Ax1 were stably expressed in rice T1 seeds. Finally, the marker-free plants harboring only the TaGlu-Ax1 gene were successfully screened in the T1 generation. There were no morphological differences between the wild-type and marker-free transgenic plants. The quality of only one HMW-GS (TaGlu-Ax1) was unsuitable for bread making using transgenic rice dough. Greater numbers and combinations of HMW and LMW-GSs and gliadins of wheat are required to further improve the processing qualities of rice dough. TaGlu-Ax1 marker-free transgenic plants could provide good materials to make transgenic rice with improved bread-making qualities.

Anti-inflammatory effects of Ishige sinicola ethanol extract in LPS-induced RAW 264.7 cell and mouse model (LPS로 유도된 RAW 264.7 Cell과 마우스 모델에 대한 넓패(Ishige sinicola) 에탄올 추출물의 항염증 효과)

  • Kim, Ji-Hye;Kim, Min-Ji;Kim, Koth-Bong-Woo-Ri;Park, Sun-Hee;Cho, Kwang-Su;Kim, Go-Eun;XU, Xiaotong;Lee, Da-Hye;Park, Ga-Ryeong;Ahn, Dong-Hyun
    • Food Science and Preservation
    • /
    • v.24 no.8
    • /
    • pp.1149-1157
    • /
    • 2017
  • Inflammation is the first response of the immune system to infection or irritation in our body. The use of medicinal plants has been widely applied as an alternative source for drug development. One of marine natural resources, the anti-inflammatory effect of Ishige sinicola ethanol extract (ISEE), was evaluated by using LPS-induced RAW 264.7 cell and mice model. As a result, the production of nitric oxide (NO) and pro-inflammatory cytokines (IL-6, IL-$1{\beta}$, TNF-${\alpha}$) were inhibited with increasing concentration of ISEE without any cytotoxicity. Furthermore, ISEE suppressed the expression of not only inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), nuclear factor-kappa B (NF-${\kappa}B$) p65, and mitogen-activated protein kinases (MAPKs), including extracellular signal-regulated kinase (ERK) 1/2, p38, and c-Jun N-terminal kinase (JNK) in a dose-dependent manner. In mice ear edema test, the formation of edema was reduced at the highest dosage of ISEE and the reduction of the number of infiltrated mast cells was observed in histological analysis. These results indicate that ISEE has a potent anti-inflammatory activity and can be used as a pharmaceutical material for many kinds of inflammatory disease.

Effects of Heat Shock Protein 70 (HSP70) Induction after Lipopolysaccharide Exposure on the IL-6 Production and the Cell Viability after Subsequent Lipopolysaccharide Challenge in Murine Alveolar Epithelial Cells (내독소로 전처치한 쥐 폐포상피에서 HSP70 유도가 추가 내독소 자극에 따른 IL-6 생성능 및 세포생존도에 미치는 영향)

  • Lee, Jung Mi;Kim, Jin Sook;Kim, Young Kyoon;Kim, Seung Joon;Lee, Sook Young;Kwon, Soon Seog;Park, Sung Hak
    • Tuberculosis and Respiratory Diseases
    • /
    • v.58 no.4
    • /
    • pp.375-384
    • /
    • 2005
  • Background and Aims : Pre-induction of heat shock protein 70 (HSP70) is known to effectively attenuate the lipopolysaccharide (LPS)-induced inflammatory response in lung tissue. However, it is unclear if HSP70 induction after LPS exposure attenuates the subsequent LPS-induced inflammatory response in alveolar epithelial cells. This study examined the effects of HSP70 induction after LPS exposure on the IL-6 production and the cell viability after a subsequent LPS challenge in murine alveolar epithelial cells, and investigated whether or not HSP70 itself may be involved in those effects. Methods : Murine alveolar epithelial cells were cultured and divided into two groups; the Non-Pre-LPS group without a LPS pre-treatment and the Pre-LPS group with a LPS pre-treatment. Each group was subdivided into the following four subgroups: subgroup C (control), subgroup Q (quercetin), subgroup HSP70 (HSP70 induction), and subgroup HSP70-Inh (HSP70 inhibition). HSP70 expression, which was induced by sodium arsenite and inhibited by quercetin, was analyzed by western blot analysis. The IL-6 levels in the culture supernatant were measured by ELISA, and the cell viability was measured using a simplified MTT assay. Results : The IL-6 levels were lower in subgroup HSP70 than in subgroup C (P<0.01), and were higher in subgroup HSP70-Inh than in subgroup HSP70 in both the Non-Pre-LPS and Pre-LPS groups (P<0.05, P<0.01). The cell viability tended to decrease in the Pre-LPS group compared with the Non-Pre-LPS group. While the cell viability was higher in subgroups Q, HSP70, and HSP70-Inh than in subgroup C in the Non-Pre-LPS group (P<0.05, P<0.05, P<0.01), there was no difference in cell viability among the subgroups in the Pre-LPS group. Conclusion : HSP70 induction after a LPS pre-treatment in murine alveolar epithelial cells inhibits the subsequent LPS-induced IL-6 production without affecting the cell viability, and HSP70 by itself may play an important role in this proccess.

Anti-inflammatory Activity of Sorghum bicolor (L.) Moench var. Hwanggeumchal Grains in Lipopolysaccharide-stimulated RAW264.7 Murine Macrophage Cell Line (지질다당류-자극된 마우스 대식세포주 RAW264.7에서 황금찰수수 종자의 항염증 활성)

  • Jun, Do Youn;Woo, Hyun Joo;Ko, Jee Youn;Kim, Young Ho
    • Journal of Life Science
    • /
    • v.32 no.12
    • /
    • pp.929-937
    • /
    • 2022
  • To investigate the anti-inflammatory activity of the grains of sorghum, three Sorghum bicolor (L.) Moench variants (Hwanggeumchal, Huinchal, and Chal) being cultivated in Korea, the 80% ethanol (EtOH) extracts of individual sorghum grains were compared for their inhibitory activity against nitric oxide (NO) production in lipopolysaccharide (LPS)-stimulated RAW264.7 murine macrophage cell line. Among them, the EtOH extract of sorghum Hwanggeumchal grains could exert the highest inhibitory effect on the LPS-induced NO production. However, under these conditions, the viability of RAW264.7 cells was not affected. When the EtOH extract of sorghum Hwanggeumchal grains was sequentially fractionated with n-hexane, methylene chloride (MC), ethyl acetate (EtOAc), and n-butanol, the anti-NO production activity was predominantly detected in both MC and EtOAc fractions. In particular, treatment with the MC fraction reduced dose-dependently the expression levels of iNOS, COX-2 and pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α) in LPS-stimulated RAW264.7 cells. Simultaneously, the MC fraction could prevent LPS-induced activating phosphorylation of p38 mitogen-activated protein kinase (MAPK), c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK). HPLC analysis of the MC fraction showed gentisic acid and naringenin as the major phenolic components. Both gentisic acid and naringenin commonly exhibited a potent inhibitory activity against LPS-induced NO production in RAW264.7 cells. Together, these results provide the evidence of the inhibitory activity of Hwanggeumchal grains on LPS-induce inflammatory responses in RAW264.7 murine macrophage cells and also suggest that sorghum grains possess beneficial health effects which can be applicable in development of the grain-based functional foods.

Verification of Anti-Inflammatory Effects of Strawberry (Fragaria x ananassa var. 'Seolhyang') Stems on Macrophages Stimulated by Lipopolysaccharides (LPS로 자극된 대식세포에 대한 딸기 줄기의 항염증 효능 검증)

  • Dan-Hee Yoo;In-Chul Lee
    • Microbiology and Biotechnology Letters
    • /
    • v.51 no.3
    • /
    • pp.280-288
    • /
    • 2023
  • In strawberry farming, most parts of strawberry stems but the fruit have been dumped. Therefore, this study attempted to investigate the antioxidant and anti-inflammatory effects of strawberry stems which are thrown away after farming. For this, strawberry stem extracts were obtained, using hot water and 70% ethanol. First, total polyphenol contents of the hot water and ethanol extract were checked (265.4 ± 0.12 mg TAE/100 g, 503.88 ± 0.2 mg TAE/100 g). For analysis of antioxidant activities, electron donating ability (EDA) and 2,2'-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging activity were measured. Both extracts increased in a dose-dependent fashion, and similar effects with vitamin C (control group) were confirmed. In terms of cell viability of the hot water and ethanol extracts of strawberry stems, 'RAW 264.7' was 99% or higher at 500 ㎍/ml. In addition, cell experiments were conducted at 50, 100 and 500 ㎍/ml where cell viability is above 99%. In terms of inhibition of the inflammatory mediator 'nitric oxide (NO)', the hot water and ethanol extracts of strawberry stems were 37.9% and 38.8% respectively, confirming the inhibition of NO production. To check anti-inflammatory activities, protein and mRNA expressions of 'iNOS' and 'COX-2' were measured, using RAW 264.7. Compared to the LPS group, the protein expression of the inflammatory mediators was inhibited in the hot water and ethanol extract-treated groups. The above results confirmed that the hot water and ethanol extracts of strawberry stems are valuable as natural substances with antioxidant and anti-inflammatory activities.