Browse > Article
http://dx.doi.org/10.5352/JLS.2016.26.10.1121

Development of Marker-free TaGlu-Ax1 Transgenic Rice Harboring a Wheat High-molecular-weight Glutenin Subunit (HMW-GS) Protein  

Jeong, Namhee (National Institute of Crop Sciences, Rural Development Administration)
Jeon, Seung-Ho (Research Center for Seed Utilization, Gyeongsangnam-do National University of Science Technology)
Kim, Dool-Yi (National Institute of Crop Sciences, Rural Development Administration)
Lee, Choonseok (National Institute of Crop Sciences, Rural Development Administration)
Ok, Hyun-Choong (National Institute of Crop Sciences, Rural Development Administration)
Park, Ki-Do (National Institute of Crop Sciences, Rural Development Administration)
Hong, Ha-Cheol (National Institute of Agricultural Sciences, Rural Development Administration)
Lee, Seung-Sik (Advanced Radiation Technology Institute, Atomic Energy Research Institute)
Moon, Jung-Kyung (National Institute of Agricultural Sciences, Rural Development Administration)
Park, Soo-Kwon (National Institute of Crop Sciences, Rural Development Administration)
Publication Information
Journal of Life Science / v.26, no.10, 2016 , pp. 1121-1129 More about this Journal
Abstract
High-molecular-weight glutenin subunits (HMW-GSs) are extremely important determinants of the functional properties of wheat dough. Transgenic rice plants containing a wheat TaGlu-Ax1 gene encoding a HMG-GS were produced from the Korean wheat cultivar ‘Jokyeong’ and used to enhance the bread-making quality of rice dough using the Agrobacterium-mediated co-transformation method. Two expression cassettes with separate DNA fragments containing only TaGlu-Ax1 and hygromycin phosphotransferase II (HPTII) resistance genes were introduced separately into the Agrobacterium tumefaciens EHA105 strain for co-infection. Rice calli were infected with each EHA105 strain harboring TaGlu-Ax1 or HPTII at a 3:1 ratio of TaGlu-Ax1 and HPTII. Among 210 hygromycin-resistant T0 plants, 20 transgenic lines harboring both the TaGlu-Ax1 and HPTII genes in the rice genome were obtained. The integration of the TaGlu-Ax1 gene into the rice genome was reconfirmed by Southern blot analysis. The transcripts and proteins of the wheat TaGlu-Ax1 were stably expressed in rice T1 seeds. Finally, the marker-free plants harboring only the TaGlu-Ax1 gene were successfully screened in the T1 generation. There were no morphological differences between the wild-type and marker-free transgenic plants. The quality of only one HMW-GS (TaGlu-Ax1) was unsuitable for bread making using transgenic rice dough. Greater numbers and combinations of HMW and LMW-GSs and gliadins of wheat are required to further improve the processing qualities of rice dough. TaGlu-Ax1 marker-free transgenic plants could provide good materials to make transgenic rice with improved bread-making qualities.
Keywords
Co-transformation; high-molecular-weight glutenin subunit (HMW-GS) protein; markerfree transgenic rice; wheat;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Ebuehi, O. A. T. and Oyewole, A. C. 2008. Effect of cooking and soaking on physical, nutrient composition and sensory evaluation of indigenous and foreign rice varieties in Nigeria. Nutr. Food Sci. 38, 15-21.   DOI
2 Galili, G. 1989. Heterologous expression of a wheat high-molecular-weight glutenin gene in Escherichia coli. Proc. Natl. Acad. Sci. USA 86, 7756-7760.   DOI
3 Gujral, H. S. and Rosell, C. M. 2004. Improvement of the bread making quality of rice flour by glucose oxidase. Food Res. Int. 37, 75-81.   DOI
4 He, G. Y., Rooke, L., Steele, S., Bekes, F., Gras, P., Tatham, A. S., Fido, R., Barcelo, P., Shewry, P. R. and Lazzeri, P. A. 1999. Transformation of pasta wheat (Triticum turgidum L. var. durum) with high-molecular-weight glutenin subunit genes and modification of dough functionality. Mol. Breed. 5, 377-386.   DOI
5 Hiei, Y., Ohta, S., Komari, T. and Kumashiro, T. 1994. Efficient transformation of rice (Oryza sativa L.) mediated by agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J. 6, 271-282.   DOI
6 Hohn, B., Levy, A. A. and Puchta, H. 2001. Elimination of selection markers from transgenic plants. Curr. Opin. Biotechnol. 12, 139-143.   DOI
7 Komari, T., Hiei, Y., Saito, Y., Murai, N. and Kumashiro, T. 1996. Vectors carrying two separate T-DNAs for co-transformation of higher plants mediated by Agrobacterium tumefaciens and segregation of transformants free from selection markers. Plant J. 10, 165-174.   DOI
8 Vaucheret, H., Béclin, C., Elmayan, T., Feuerbach, F., Godon, C., Morel, J-B., Mourrain, P., Palauqui, J-C. and Vernhettes, S. 1998. Transgene-induced gene silencing in plants. Plant J. 16, 651-659.   DOI
9 Volkov, R. A., Panchuk, I. I. and SchoZ, F. 2003. Heatstress-dependency and developmental modulation of gene expression: the potential of house-keeping genes as internal standards in mRNA expression profiling using real-time RT-PCR. J. Exp. Bot. 54, 2343-2349.   DOI
10 Zhiwu, Li. and Harold, N. T. 2005. Rapid method for high-quality RNA isolation from seed endosperm containing high levels of starch. Biotechniques 38, 872-876.   DOI
11 Thompson, B. G., Anderson, R. and Murray, R. G. 1980. Unusual polar lipids of Micrococcus radiodurans strain Sark. Can. J. Microbiol. 26, 1408-1411.   DOI
12 Park, S. K., Jung, Y. J., Lee, J. R., Lee, Y. M., Jang, H. H., Lee, S. S., Park, J. H., Kim, S. Y., Moon, J. C., Lee, S. Y., Chae, H. B., Shin, M. R., Jung, J. H., Kim, M. K., Kim, Y. Y., Yun, D. J., Lee, G. O. and Lee, S. Y. 2009. Heat-shock and redox-dependent functional switching of an h-type arabidopsis thioredoxin from a disulfide reductase to a molecular chaperone. Plant Physiol. 150, 552-561.   DOI
13 Kuiper, H. A., Kleter, G. A., Noteborn, H. P. and Kok, E. J. 2001. Assessment of the food safety issues related to genetically modified foods. Plant J. 27, 503-528.   DOI
14 Altpeter, F., Vasil, V., Srivastava, V. and Vasil, I. K. 1996. Integration and expression of the high-molecular-weight glutenin subunit 1Ax1 gene into wheat. Nat. Biotechnol. 14, 1155-1159.   DOI
15 Alvarez, M. L., Guelman, S., Halford, N. G., Lusting, S., Reggiardo, M. I., Ryabushkina, N., Shewry, P., Stein, J. and Vallejos, R. H. 2000. Silencing of HMW glutenins in transgenic wheat expressing extra HMW subunits. Theor. Appl. Genet. 100, 319-327.   DOI
16 Kumpatla, S. P., Chandrasekharan, M. B., Iyer, L. M., Li, G. and Hall, T. C. 1998. Genome intruder scanning and modulation systems and transgene silencing. Trends Plant Sci. 3, 97-104.   DOI
17 Li, Y., Wang, Q., Li, X., Xiao, X., Sun, F., Wang, C., Hu, W., Feng, Z., Chang, J., Chen, M., Wang, Y., Li, K., Yang, G. and He, G. 2012. Coexpression of the high molecular weight glutenin subunit 1Ax1 and puroindoline improves dough mixing properties in durum wheat (Triticum turgidum L. ssp. Durum). Plos One 7, e50057.   DOI
18 Matzke, M. A., Matzke, J. M. and Eggleston, W. B. 1996. Paramutation and transgene silencing: a common response to invasive DNA? Trends Plant Sci. 1, 382-388.   DOI
19 McElroy, D., Zhang, W., Cao, J. and Wu, R. 1990. Isolation of an efficient actin promoter for use in rice transformation. Plant Cell 2, 163-171.   DOI
20 Payne, P. I., Corfield, K. G., Holt, L. M. and Blackman, J. A. 1981. Correlations between the inheritance of certain high-molecular-weight subunits of glutenin and breadmaking quality in progenies of six crosses of bread wheat. J. Sci. Food Agric. 32, 51-60.   DOI
21 Blechl, A. E. and Anderson, O. D. 1996. Expression of a novel highmolecular-weight glutenin gene in transgenic wheat. Nat. Biotechnol. 14, 875–879.   DOI
22 An, G., Evert, P. R., Mitra, A. and Ha, S. B. 1988. Binary vectors. pp. A3/1-19 In: Gelvin, S.B. and. Schilperoort, R.A. (eds.), Plant molecular biology manual. Kluwer Academic Publishers, Boston, MA.
23 Araki, E., Ikeda, M. T., Ohgihara, Y., Toyoda, A. and Yano, H. 2008. Development of transgenic rice (Oryza sativa L.) expressing wheat high- and low-molecular-weight glutenin subunit proteins. Breed. Sci. 58, 121-128.   DOI
24 Barro, F., Rooke, L., Bekes, F., Gras, P., Tatham, A. S., Fido, R., Lazzeri, P. A., Shewry, P. R. and Barcelo, P. 1997. Transformation of wheat with high-molecular-weight subunit genes results in improved functional properties. Nat. Biotechnol. 15, 1295-1299.   DOI
25 Chen, H., Nelson, R. S. and Sherwood, J. L. 1994. Enhanced recovery of transformants of Agrobacterium tumefaciens after freeze-thaw transformation and drug selection. Biotechniques 16, 664-669.
26 Cho, J. I., Ryoo, N., Ko, S., Lee, S. K., Lee, J., Jung, K. H., Lee, Y. H., Bhoo, S. H., Winderickx, J., An, G., Hahn, T. R. and Jeon, J. S. 2006. Structure, expression, and functional analysis of the hexokinase gene family in rice (Oryza sativa L.). Planta 224, 598-611.   DOI
27 Chu, C. C., Wang, C. S., Sun, C. S., Hsu, C., Yin, K. C., Chu, C. Y. and Yun., B. F. 1975. Establishment of an efficient medium for anther culture of rice through comparative experiments on the nitrogen sources. Sci. China. Math. 18, 659-668.
28 Rooke, L., Barro, F., Tatham, A. S., Fido, R., Steele, S., Bekes, F., Gras, P., Martin, A., Lazzeri, P. A., Shewry, P. R. and Barcelo, P. 1999. Altered functional properties of tritordeum by transformation with HMW glutenin subunit genes. Theor. Appl. Genet. 99, 851-858.   DOI
29 Payne, P. I., Nightingale, M. A., Krattiger, A. F. and Holt, L. M. 1987. The relationship between HMW glutenin subunit composition and the bread-making quality of Britishgrown wheat varieties. J. Sci. Food Agric. 40, 51-65.   DOI
30 Roberts, L. S., Thompson, R. D. and Flavell, R. B. 1989. Tissue-specific expression of a wheat high-molecular-weight glutenin gene in transgenic tobacco. Plant Cell 1, 569-578.   DOI
31 Ramessar, K., Peremarti, A., Gómez-Galera, S., Naqvi, S., Moralejo, M., Muñoz, P., Capell, T. and Christou, P. 2007. Biosafety and risk assessment framework for selectable marker genes in transgenic crop plants: a case of the science not supporting the politics. Transgenic Res. 16, 261-280.   DOI
32 Shewry, P. R., Halford, N. G. and Tatham, A. S. 1989. The high-molecularweight subunits of wheat, barley and rye: genetics, molecular biology, chemistry and role in wheat gluten structure and functionality. Oxford Surveys Plant Mol. Cell Bio. l6, 163-219.
33 Shewry, P. R., Tatham, A. S., Fido, R., Jones, H., Barcelo, P. and Lazzeri, P. A. 2001 Improving the end use properties of wheat by manipulating the grain protein composition. Euphytica 119, 45-48.   DOI
34 Tatham, A. S. and Shewry, P. R. 1985. The conformation of wheat gluten proteins. The secondary structures and thermal stabilities of alpha-, beta-, gamma- and omega- gliadins. J. Cereal Sci. 3, 103-113.   DOI