• 제목/요약/키워드: protection circuit module

Search Result 51, Processing Time 0.032 seconds

Study on Design of 60 V TDMOSFET for Protection Circuit Module (Protection Circuit Module에 최적화된 60 V급 TDMOSFET 최적화 설계에 관한 연구)

  • Lee, Hyun-Woong;Jung, Eun-Sik;Oh, Reum;Sung, Man-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.5
    • /
    • pp.340-344
    • /
    • 2012
  • Protected Circuit Module protects battery from over-charge and over-discharge, also prevents accidental explosion. Therefore, power MOSFET is essential to operate as a switch within the module. To reduce power loss of MOSFET, the on state voltage drop should be lowered and the switching time should be shorted. However there is trade-off between the breakdown voltage and the on state voltage drop. The TDMOS can reduce the on state voltage drop. In this paper, effect of design parameter variation on electrical properties of TDMOS, were analyzed by computer simulation. According to the analyzed results, the optimization was performed to get 65% higher breakdown voltage and 17.4% on resistance enhancement.

Development of PC-based Auto Inspection System for Smart Battery Protection Circuit Module (PC기반의 스마트 배터리 보호모듈 자동 검사 시스템 개발)

  • Yoon, Tae-Sung;Jang, Gi-Won;Park, Ju-No;Lee, Jeong-Jae
    • Proceedings of the KIEE Conference
    • /
    • 2005.05a
    • /
    • pp.275-277
    • /
    • 2005
  • In a lithium-ion battery which is being used in many portable electronic goods, electrolyte is disaggregated and then the gas is happened when electric charging volt is over the 4.5V. So, the pressure on the safety valve is increased and electrolyte is leaked out in the cell. It leads to the risk of explosion. On the other hand, in the case which the battery is discharged excessively, the negative pole is damaged and the performance of the battery is deteriorated. The protection module of a lithium-ion battery is used for preventing such risk and the inspection system is needed to check the performance of such protection module. In this research, a PC-based auto inspection system is developed for the inspection of a battery protection module using Dallas chipset. In the inspection system, AVRl28 chip is used as a controller and the communication protocol is developed for the data communication between the protection module and the AVR128 chip. And GPIB interface is used for the control of measuring devices. Also, MMI environment is developed using LabView for convenient monitoring by the tester.

  • PDF

A Study on the Development of a Low Cost Inverter Integration Module with a Protection Circuit of Source Harmonics (전원 고조파 방지 회로를 내장한 low-cost 인버터 통합 모듈 개발에 관한 연구)

  • Kim, Tae-Kue;Choi, Hyun-Eui;Ahn, Ho-Kyun;Yoon, Tae-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.930-931
    • /
    • 2008
  • This study is on the development of a low cost inverter module with Power Factor Correction(PFC) circuit which satisfies the international harmonic current standard such as IEC61000-3-2. In this study, the performances of the PFC circuit applying a new control method are simulated and verified by Matlab/Simulink. Also, the inverter module with the designed PFC circuit is implemented and the experimental results for the module are presented. Finally, through an analysis for the results of the simulation and the experiment, the merits obtainable by applying the PFC circuit when designing an inverter module are discussed and presented.

  • PDF

Electrostatic Discharge Experiment for Smartphone Battery Protection Circuit Module (스마트폰 배터리 보호회로 모듈에 대한 정전기 방전 실험)

  • Yoo, Jong-Gyeong;Park, Kyung-Je;Jeon, Seong-Hyeok;Yeo, Junho;Cho, Young-Ki;Lee, Dae-Heon;Kim, Jong-Kyu
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.53-54
    • /
    • 2017
  • In this paper, we have studied the electrostatic discharge test for the battery protection circuit module in the lithium ion battery used as a smartphone battery which is used to prevent the explosion hazard due to overcharge, over discharge, and short-circuit. A lithium ion battery of S company was used as an experimental sample, and an ESD gun simulator compliant with IEC 61000-4-2 standard was used for electrostatic discharge injection. The contact discharge was applied to the various pins of the battery protection circuit module in increments of 2 kV in the range of 2 kV to 10 kV and in 5 kV increments in the range of 10 kV to 30 kV.

  • PDF

Built-in protection circuit module by using VO2 temperature sensors (VO2 온도센서를 이용한 전원차단 PCM 구성)

  • Song, K.H.;Choi, J.B.;Son, M.W.;Yoo, K.S.
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.28-32
    • /
    • 2009
  • Most portable mobile devices employ rechargeable lithium-ion batteries. This lithium-ion battery usually suffers from the possibility of explosion due to heat generation from surrounding atmosphere or internal deficiency during charging or at overuse. To solve these problems, most rechargeable batteries have a built-in protection circuit module (PCM). The resistance of a properly processed $VO_2$ critical temperature sensor (CTS) is changed dramatically at a critical temperature of around $68^{\circ}C$, which can replace some bi-metal, NTC, or PTC sensors embedded in PCM. Such $VO_2$ CTS consumes a very small current at the level of natural discharge. Experimental results showed that this CTS could be applied to a PCM as the PCM could protect the battery while keeping its power consumption at minimum.

Electromagnetic Susceptiblity Experiments for Battery Protection Circuit Module (배터리 보호회로 모듈에 대한 전자파 내성 실험)

  • Park, Kyung-Je;Yoo, Jong-Gyeong;Lee, Dae-Heon;Yeo, Junho;Cho, Young-Ki;Kim, Jong-Kyu
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.57-58
    • /
    • 2017
  • In this paper, we have studied electromagnetic susceptibility tests of the battery protection circuit module of a lithium ion battery. Electromagnetic susceptibility tests can be divided into conducted susceptibility for electromagnetic waves flowing through power lines, input / output lines, antenna ports, and radiated susceptibility for spatially radiated electromagnetic waves. A lithium ion battery of S company was used as an experimental sample, and conducted susceptibility tests were conducted on Surge (IEC 61000-4-5), Ring wave (IEC 61000-4-12), and Damped oscillatory wave(IEC 61000-4-18). Radiated susceptibility tests were performed according to IEC 61000-4-3.

  • PDF

Design of Gate Driver Chip for Ionizer Modules with Fault Detection Function (Fault Detection 기능을 갖는 이오나이저 모듈용 게이트 구동 칩 설계)

  • Jin, Hongzhou;Ha, PanBong;Kim, YoungHee
    • Journal of IKEEE
    • /
    • v.24 no.1
    • /
    • pp.132-139
    • /
    • 2020
  • The ionizer module used in this air cleaner supplies high voltages of 3.5KV / -4KV to the discharge electrode HV+ / HV- using a winding transformer to generate positive and negative ions by electric field radiation of carbon fiber brush. The ionizer module circuit using the existing MCU has the disadvantage of large PCB size and expensive price, and the gate driver chip using the existing ring oscillator has oscillation period sensitive to PVT (Process-Voltage-Temperature) fluctuation and there is risk of fire or electric shock because there is no fault detection function by short circuit of HV+ and GND as well as HV- and GND. Therefore, in this paper, even though PVT fluctuates, by using 7-bit binary up counter, HV+ voltage reaches the target voltage by adjusting oscillation period. And an HV+ short fault detection circuit for detecting a short circuit between HV+ and GND, an HV- short fault detection circuit for detecting a short circuit between HV- and GND, and an OVP (Over-Voltage Protection) for detecting that HV+ rises above an overvoltage are newly proposed.

Fuse Protection of IGBT Modules against Explosions

  • Blaabjerg, Fred;Ion, Florin;Ries, Kareten
    • Journal of Power Electronics
    • /
    • v.2 no.2
    • /
    • pp.88-94
    • /
    • 2002
  • The demand for protection of power electronic application has during the last couple of vears increased regarding the high-power IGBT modules. Even with an active protection, a high power IGBT still has a risk of exhibiting a violent rupture in the case of a fault if IGBT Fuses do not protect it. By introducing fuses into the circuit this will increase the circuit inductance and slight inductance over-voltage during the turn-off of the diode and the IGBT. It is therefore vital when using fuses that the added inductance is kept at a minimum. This paper discuss three issues regarding the IGBT Fuse protection of adding inductance of existing High-speed and new Typower Fuse protection. First, the problem of adding inductance of exiting High-speed and new Typower Fuse DC-link circuit is treated, second a short discussion of protection of the IGBT module is done, and finally, the impect of the high frwquency loading on the currying capability of the fuses is presented.

Fuse Protection of IGBT Modules against Explosions

  • Blaabjerg Frede;Iov Florin;Ries Karsten
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.703-707
    • /
    • 2001
  • The demand for protection of power electronic applications has during the last couple of years increased regarding the high-power IGBT modules. Even with an active protection, a high power IGBT still has a risk of exhibiting a violent rupture in the case of a fault if IGBT Fuses do not protect it. By introducing fuses into the circuit this will increase the circuit inductance and slight increase the over-voltage during the turn-off of the diode and the IGBT. It is therefore vital when using fuses that the added inductance is kept at a minimum. This paper discuss three issues regarding the IGBT Fuse protection. First, the problem of adding inductance of existing High-Speed and new Typower fuses in DC-link circuit is treated, second a short discussion of the protection of the IGBT module is done, and finally, the impact of the high frequency loading on the current carrying capability of the fuses is presented.

  • PDF

Battery Pack of Elastically Adhering Protection Circuit Module (보호회로가 탄성적으로 부착된 전지 팩)

  • Cho, Kyeung-Ho;Yang, Hae-Sool
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.7
    • /
    • pp.1740-1749
    • /
    • 2009
  • As mobile devices evolve and digital convergence trend is here to stay, mobile phones are built with multiple functions including cameras, MP3s, TVs and game consoles. As a consequence, such multi-functional mobile phones come to spend more power, facilitating development of next-generation ultra-capacity lithium ion battery. In addition, environmental regulations and rising oil prices cause demand for hybrid cars to keep rising. Accordingly, more and more attention is being paid to medium and large batteries and more efforts are being made to realize lower battery prices, higher outputs and stability. This study presented a patent technology related to the lithium ion battery packing that allows reducing processes related, increasing productivity and recycling parts other than the body. The lithium ion battery pack to which protection circuits are elastically attached provides short circuit protection for the circuit and the body and makes electric connection of the circuit and the body easier.