DOI QR코드

DOI QR Code

Built-in protection circuit module by using VO2 temperature sensors

VO2 온도센서를 이용한 전원차단 PCM 구성

  • Song, K.H. (Department of Materials Science and Engineering, University of Seoul) ;
  • Choi, J.B. (Department of Materials Science and Engineering, University of Seoul) ;
  • Son, M.W. (Department of Materials Science and Engineering, University of Seoul) ;
  • Yoo, K.S. (Department of Materials Science and Engineering, University of Seoul)
  • 송건화 (서울시립대학교 신소재공학과) ;
  • 최정범 (서울시립대학교 신소재공학과) ;
  • 손명우 (서울시립대학교 신소재공학과) ;
  • 유광수 (서울시립대학교 신소재공학과)
  • Published : 2009.01.31

Abstract

Most portable mobile devices employ rechargeable lithium-ion batteries. This lithium-ion battery usually suffers from the possibility of explosion due to heat generation from surrounding atmosphere or internal deficiency during charging or at overuse. To solve these problems, most rechargeable batteries have a built-in protection circuit module (PCM). The resistance of a properly processed $VO_2$ critical temperature sensor (CTS) is changed dramatically at a critical temperature of around $68^{\circ}C$, which can replace some bi-metal, NTC, or PTC sensors embedded in PCM. Such $VO_2$ CTS consumes a very small current at the level of natural discharge. Experimental results showed that this CTS could be applied to a PCM as the PCM could protect the battery while keeping its power consumption at minimum.

Keywords

References

  1. C. H. Griffiths and H. K. Eastwood, 'Influence of stoichiometry on the metal-semiconductor transition in vanadium dioxide', J. Appl. Phys., vol. 45, no. 5, pp. 2201-2206, 1974 https://doi.org/10.1063/1.1663568
  2. K. S. Yoo, J. M. Kim, and H. J. Jung, 'Electrical properties of semiconducting VO2-based critical temperature sensors', J. Kor. Ceram. Soc., vol. 30, no. 10, pp. 866-870, 1993
  3. Y. Muraoka, Y. Ueda, and Z. Hiroi, 'Large modification of the metal-insulator transition temperature in strained $VO_{2}$ films grown $TiO_{2}$ substrates', J. Phys and Chem. of Solids, vol. 63, pp. 965-967, 2002 https://doi.org/10.1016/S0022-3697(02)00098-7
  4. Y. Ningyi, L. Jinhua, and L. Chenglu, 'Valence reduction process from sol-gel $V_{2}O_{5}$ to $VO_{2}$ thin films', Appl. Surf. Sci., vol. 191, pp. 176-180, 2002 https://doi.org/10.1016/S0169-4332(02)00180-0
  5. K. H. Song and K. S. Yoo, 'Characterization of $VO_{2}$ thick-film critical temperature sensors by heat treatment conditions', J. Kor. Sensors Soc., vol. 16, no. 6, pp. 407-412, 2007 https://doi.org/10.5369/JSST.2007.16.6.407
  6. Dachuan, Niankan, Jingyu, and Xiulin, 'High quality vanadium dioxide films prepared by an inorganic sol-gel method', Materials Research Bulletin, vol. 31, no. 3, pp. 335-340, 1996 https://doi.org/10.1016/0025-5408(95)00191-3
  7. J. H. Kang, H. B. Shim, S. H. Park, K. H. Song, and K. S. Yoo, 'Temperature vs. resistance properties of the VO2-based critical temperature sensors', Proceedings of the International Sensors Conference. pp. 46-47, 2004
  8. J. Verkelis, Z. Bliznikas, K. Breive, V. Dikinis, and R. Sarmaitis, 'Vanadium oxides thin films and fixed-temperature heat sensor with memory', Sensors and Actuators A, vol. 68, pp. 338-343, 1998 https://doi.org/10.1016/S0924-4247(98)00054-5