• 제목/요약/키워드: prostaglandin $H_2$ synthase

검색결과 53건 처리시간 0.031초

Inhibitory Action of Tsunokaori Tangor Peel on the Lipopolysaccharide-Induced Inflammatory Response in RAW 264.7 Macrophage Cells

  • Choi, Soo-Youn;Hwang, Joon-Ho;Ko, Hee-Chul;Park, Soo-Young;Kim, Gi-Ok;Kim, Duck-Hee;Chang, Ih-Seop;Kwon, H.-Moo;Kim, Se-Jae
    • Food Science and Biotechnology
    • /
    • 제15권2호
    • /
    • pp.270-276
    • /
    • 2006
  • We evaluated the effects of extracts of Tsunokaori tangor peel on lipopolysaccharide (LPS)-induced nitric oxide (NO) and prostaglandin $E_2\;(PGE_2)$ in RAW 264.7 cells. The ethyl acetate fraction of Tsunokaori tangor peel (EA-TTP) markedly inhibited the production of NO and $PGE_2$ in LPS-stimulated RAW 264.7 cells. Consistent with these findings, the expression levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) proteins were down-regulated in a dose-dependent manner. Additionally, EA-TTP decreased the expression iNOS mRNA but not COX-2 mRNA. To determine the upstream signaling mechanism for the down-regulation of LPS-induced iNOS expression, we investigated the effect of EA-TTP on the degradation and re-synthesis of $I{\kappa}B{\alpha}$. EA-TTP dose-dependently delayed $I{\kappa}B{\alpha}$ degradation and increased $I{\kappa}B{\alpha}$ re-appearance following degradation, suggesting this as the mechanism by which EA-TTP suppressed iNOS gene expression. The EA-TTP also dose-dependently reduced the expression of the cellular stress-response protein heme oxygenase-1, and inhibited the LPS-induced sustained activation of extracellar signal-regulated kinase (ERK).

진세노사이드의 혈관확장작용과 분자기전 (Ginsenosides-mediated Vascular Relaxation and Its Molecular Mechanisms)

  • 김낙두
    • Journal of Ginseng Research
    • /
    • 제32권2호
    • /
    • pp.89-98
    • /
    • 2008
  • There are increasing evidences in the literatures on the potential role of ginsenosides in treating cardiovascular diseases. In this article, current information about ginsenosides-mediated vascular relaxation are reviewed. From the published studies using isolated organs, cell culture systems and animal models, ginsenosides are shown to relax blood vessels and improve blood flow through diverse mechanisms, including nitric oxide release by activating eNOS phosphorylation via PI3K/Akt and/or ERK1/2 pathways in endothelial cells, induction of inducible nitric oxide synthase through activation of NF-${\kappa}$B, reducing the intracelluar Ca$^{2+}$ levels by activating Ca$^{2+}$-activated K$^{+}$ channels in vascular smooth muscle cells and reducing platelet aggregation by decreasing thromboxane A$_2$ formation and intracelluar Ca$^{2+}$in platelets. In addition, the relevant clinical trials regarding the effects of ginsenosides on the cardiovascular disease are summarized, particulary focusing on managing hypertension and improving thrombotic disorders. Finally, antagonistic effects of ginsenosides on the prostaglandin H$_2$ receptor and scavenging effects on the generation of oxygen-derived free radicals in spontaneously hypertensive rats (SHR) are discussed.

Anti-inflammatory Effect of Indirubin-3'-Monoxime-5-Sulphonic Acid on Lipopolysaccharide-stimulated Murine Macrophage

  • Park, Gang-Baek;Kim, Hyun-Jin;Heo, Hye-Seon;Park, Geun-Mook;Park, Kyung-Woo;Kim, Jin-Kyung
    • 대한의생명과학회지
    • /
    • 제17권3호
    • /
    • pp.225-230
    • /
    • 2011
  • Indirubin is the active ingredient of Danggui Longhui Wan, a mixture of plants that is used in traditional Chinese medicine to treat chronic diseases. In this study we investigated the anti-inflammatory effects of an indirubin derivative, indirubin-3’-monoxime-5-sulphonic acid (I3M-5S, $C_{16}H_{11}N_3O_5S$). We found that I3M-5S inhibits the production of various inflammatory mediators such as nitric oxide (NO) and prostaglandin $E_2$ ($PGE_2$) as well as inflammatory cytokines, tumor necrosis factor-${\alpha}$ and interleukin-6 in lipopolysaccharide (LPS) stimulated murine macrophage, RAW264.7 cells. In addition, the expression of inducible nitric oxide synthase and cyclooxygenase-2, which are essential enzymes to produce NO and $PGE_2$, respectively, was blocked by I3M-5S treatment in LPS-stimulated RAW264.7 cells. Present data suggest that I3M-5S exhibits potent anti-inflammatory activity in cultured macrophages and merit further study as potential therapeutic agents for inflammatory disorders.

도라지 잎 에탄올 추출물의 주요 성분 분석 및 마우스 대식세포와 인체 폐암세포에서 항염효과 (Analysis of Major Constituents of an Ethanol Extract of Platycodon Grandiflorum Leaves and Protective Effects on Inflammation in Murine Macrophage and Human Lung Carcinoma Cells)

  • 이정민;배병준;최지림;정영신
    • 한국식품영양학회지
    • /
    • 제37권2호
    • /
    • pp.110-122
    • /
    • 2024
  • This study investigated major constituents and anti-inflammatory effects of an ethanol extract of Platycodon grandiflorum leaves. Through HPLC analysis, chlorogenic acid and luteolin-7-O-glucoside were identified as predominant constituents in the ethanol extract. Their anti-inflammatory effects were evaluated using murine macrophage (RAW 264.7 cells) and human lung carcinoma cells (NCI-H292 & A549). The ethanol extract significantly (p<0.01) inhibited the production of nitrite, interleukin-6 (IL-6), and prostaglandin E2 (PGE2) induced by lipopolysaccharide (LPS) in RAW 264.7 cells. Furthermore, the ethanol extract suppressed the expression of cyclooxygenase-2 (COX-2) and inducible NO synthase (iNOS) proteins in RAW 264.7 cells stimulated with LPS. In NCI-H292 and A549 cells, treatment with the ethanol extract significantly (p<0.05) decreased levels of pro-inflammatory cytokines IL-6 and IL-8 induced by IL-1β. The phosphorylation of ERK rather than JNK in the mitogen-activated protein kinase signaling pathway was observed to be a more important mediator in the down-regulation of pro-inflammatory cytokines in NCI-H292 cells. These findings suggest that the ethanol extract of Platycodon grandiflorum leaves containing luteolin-7-O-glucoside exhibits promising anti-inflammatory properties.

The hyaluronan synthesis inhibitor 7-hydroxy-4-methylcoumarin inhibits LPS-induced inflammatory response in RAW 264.7 macrophage cells

  • Kim, Gwan Bo;Hyun, Chang-Gu
    • Journal of Applied Biological Chemistry
    • /
    • 제64권3호
    • /
    • pp.263-268
    • /
    • 2021
  • 7-Hydroxy-4-methylcoumarin (7H-4MC) inhibits hyaluronan production in multiple cell lines and tissue types both in vitro and in vivo. It is a commercially available drug approved for human use, called hymecromone, in European and Asian countries to prevent biliary spasms. Nevertheless, as the pharmacological efficacy of 7H-4MC has not yet been reported in macrophages, this study investigated its anti-inflammatory effects and mechanism of action using lipopolysaccharide (LPS)-induced RAW 264.7 macrophages. LPS-induced RAW 264.7 cells were treated with various concentrations of 7H-4MC (62.5, 125, 250, and 500 μM). The application of 7H-4MC significantly reduced nitric oxide and prostaglandin E2 production without cytotoxic effects. Additionally, 7H-4MC strongly decreased the expression of inducible nitric oxide synthase and cyclooxygenase. Furthermore, 7H-4MC reduced the production of proinflammatory cytokines, such as tumor necrosis factor-α, interleukin (IL)-1β, and IL-6. Finally, 7H-4MC exerted its potent anti-inflammatory actions via the upregulation of IκB-α production, which led to the inhibition of nuclear factor-κB (NF-κB) activity. These results, obtained in macrophage cell lines, suggest that 7H-4MC prevents inflammatory diseases via the NF-κB signaling pathway and that its use could be beneficial for human health. Ultimately, this is the first report describing the anti-inflammatory activity of 7H-4MC in a macrophage cell line.

Gene Expression Profile in Microglia following Ischemia-Reperfusion Injury

  • Oh, Ju-Hyeon;Han, Hyung-Soo;Park, Jae-Sik
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제10권4호
    • /
    • pp.173-180
    • /
    • 2006
  • Microglial activation is thought to play a role in the pathogenesis of many brain disorders. Therefore, understanding the response of microglia to noxious stimuli may provide insights into their role in disorders such as stroke and neurodegeneration. Many genes involved in this response have been identified individually, but not systematically. In this regards, the microarray system permitted to screen a large number of genes in biological or pathological processes. Therefore, we used microarray technology to evaluate the effect of oxygen glucose deprivation (OGD) and reperfusion on gene expression in microglia under ischemia-like and activating conditions. Primary microglial cultures were prepared from postnatal mice brain. The cells were exposed to 4 hrs of OGD and 1 h of reperfusion at $37^{\circ}C$. Isolated mRNA were run on GeneChips. After OGD and reperfusion, >2-fold increases of 90 genes and >2-fold decrease of 41 genes were found. Among the genes differentially increased by OGD and reperfusion in microglia were inflammatory and immune related genes such as prostaglandin E synthase, $IL-1{\beta}$, and $TNF-{\alpha}$. Microarray analysis of gene expression may be useful for elucidating novel molecular mediators of microglial reaction to reperfusion injury and provide insights into the molecular basis of brain disorders.

Anti-inflammatory Activity on LPS-stimulated in vitro RAW 264.7 Cells and in vivo Zebrafish of Heterosigma akshiwo

  • Kim, Junseong;Choi, Youn Kyung;Lee, Ji-Hyeok;Kim, Seo-Young;Kim, Hyun-Soo;Jeon, You-Jin;Heo, Soo-Jin
    • 한국키틴키토산학회지
    • /
    • 제22권3호
    • /
    • pp.185-193
    • /
    • 2017
  • Red tide Heterosigma akashiwo (H. akashiwo), a microscopic alga of the class Raphidophyceae, causes extensive damage to all marine ecosystems. It is essential to reduce the damage to marine ecosystems for them to be used as a resource. In this study, we used organic solvent fractionation to obtain an ethyl acetate-methanol extract from H. akashiwo (HAEM80) and then evaluated its anti-inflammatory activity in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells and a zebrafish model. HAME80 markedly inhibited the production of nitric oxide (NO) and prostaglandin $E_2$ ($PGE_2$). It also down-regulated the protein expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) and decreased the secretion of interleukin-$1{\beta}$ ($IL-1{\beta}$) in LPS-stimulated RAW 264.7 cells. HAME80 reduced yolk edema and improved the survival rate of LPS-stimulated zebrafish embryos; in addition, the extract significantly reduced the production of ROS and NO and attenuated cell death in this model. Gas chromatography-mass spectrometry (GC-MS) of the extract was used to confirm the identity of peaks 1-20. Taken together, our data suggest that H. akashiwo is a beneficial anti-inflammatory agent.

사람 치주인대세포에서 Lipopolysaccharide와 니코틴으로 유도된 iNOS와 COX-2 발현에 NFATc의 관여 (NFATc Mediates Lipopolysaccharide and Nicotine-Induced Expression of iNOS and COX-2 in Human Periodontal Ligament Cells)

  • 이상임;유지수
    • 치위생과학회지
    • /
    • 제15권6호
    • /
    • pp.753-760
    • /
    • 2015
  • 숙주 면역 반응과 면역 체계는 치주 질환에 대한 개인의 감수성의 주요 원인이다. 세균 감염과 흡연은 치주 조직의 파괴의 원인과 진행에 관여하는 중요한 환경 위험 요인이다. 따라서, 본 연구는 사람 치주인대세포에서 LPS와 니코틴이 전염증성 사이토카인인 iNOS/COX-2의 발현과 NO/$PGE_2$ 생산에 미치는 영향을 알아보고 NFATc1가 어떤 기전으로 항염작용을 하는지 밝히고자 하였다. LPS와 니코틴을 처리한 사람 치주인대세포에서 iNOS/COX-2의 발현과 함께 NO/$PGE_2$ 생산은 증가되었다. NFATc1 inhibitor인 CsA는 LPS와 니코틴에 의해 유도되는 iNOS/COX-2의 발현과 함께 NO/$PGE_2$ 생산을 감소시켰다. 이러한 연구 결과로 볼 때, NFAT signaling pathway가 LPS와 니코틴에 의한 iNOS/COX-2의 발현을 조절하여 NO/$PGE_2$ 매개 염증에 대해 방어할 수 있다고 생각된다.

LPS 자극 RAW 264.7 대식세포에 있어서 아로니아 열매 열수 추출물의 항염증 효과 (Anti-Inflammatory Effect of Hot Water Extract of Aronia Fruits in LPS-Stimulated RAW 264.7 Macrophages)

  • 양혜;오광훈;유영춘
    • 한국식품영양과학회지
    • /
    • 제44권1호
    • /
    • pp.7-13
    • /
    • 2015
  • 본 연구에서는 아로니아 열매 추출물(AF-H)의 항염증 활성을 조사하기 위하여 LPS 자극에 의해 유도된 RAW 264.7 macrophage의 염증반응에서 AF-H의 염증매개인자 및 염증성 사이토카인 분비 억제활성과 이에 관련된 세포 내 작용기전 해석을 수행하였다. LPS($1{\mu}g/mL$)로 RAW 264.7 세포를 24시간 자극하는 염증모델에서 세포독성을 나타내지 않는 안전한 농도의 AF-H($0{\sim}500{\mu}g/mL$)를 LPS 처리 12시간 전에 처리하여 NO 및 PGE2의 분비 억제활성을 측정하였다. 그 결과 AF-H 처리에 의해 NO와 PGE2의 생성이 처리 농도에 의존하여 유의하게 억제되었으며, 이들 염증매개인자의 생합성 효소인 iNOS 및 COX-2의 세포 내 발현도 현저하게 억제되는 것으로 관찰되었다. 또한 AF-H의 처리에 의해 염증성 사이토카인인 $TNF-{\alpha}$와 IL-6의 분비도 유의하게 억제되는 것으로 확인하였다. 이러한 AF-H에 의한 항염증 활성의 세포 내 기전을 해석하기 위하여 LPS 자극에 의해 유도되는 MAPK와 $NF-{\kappa}B$ 전사인자의 활성화에 대한 억제 효과를 조사하였다. 그 결과 AF-H는 MAPK의 인산화에는 별다른 영향을 미치지 않고 $NF-{\kappa}B$의 활성화($I{\kappa}B$ 인산화)를 효과적으로 억제하는 것으로 확인되었다. 한편 LPS에 의한 in vivo 패혈증 모델에서 AF-H에 의한 패혈증 억제활성을 측정한 결과 비록 통계학적으로 유의하지는 않으나 AF-H 투여에 의해 생존율과 50% 사망률의 연장 효과가 관찰되었다. 이들 결과를 종합해 보면 아로니아 열매 열수추출물은 $NF-{\kappa}B$의 활성화 억제를 통해 NO, PGE2, $TNF-{\alpha}$ 및 IL-6 등의 염증매개인자와 사이토카인의 생성을 억제하는 항염증 활성을 지니는 것으로 확인되었다.

금은화 수용성 추출물의 LPS 유도 염증매개물 억제 효과 (Inhibitory Effect of Aqueous Extract from Lonicera japonica Flower on LPS-induced Inflammatory Mediators in RAW 264.7 Macrophages.)

  • 윤용갑;김규민;이성준;유승훈;장선일
    • 대한본초학회지
    • /
    • 제22권3호
    • /
    • pp.117-125
    • /
    • 2007
  • Objective : Lonicera japonica (Caprifoliaceae) has long been used for treatment of infectious diseases in oriental countries. The aim of this study was to investigative the effect by which the aqueous extract from flower of L. japonica (LJFAE) inhibited the lipopolysaccharide (LPS)-induced inflammatory mediators in murine macrophages, RAW 264.7 cells Methods : The dried flowers of L. japonica were extracted with distilled water at $100^{\circ}C$ for 7 h. The extract was filtered through 0.45 ${\mu}m$ filter, freeze-dried. The dried extract was dissolved in Hank's balanced salt solution (HBSS) and filtered through 0.22 ${\mu}m$ filter before use. Accumulated nitrite, an oxidative product of nitric oxide (NO), was measured in the culture medium by the Griess reaction. The levels of prostaglandin E2 (PGE2), tumor necrosis factor-$\alpha$ (TNF-$\alpha$), interleukin-1$\beta$ (IL-1$\beta$), and IL-6 production, inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression were measured by enzyme-linked immunosorbent assay and Western blot analysis. Results: LJFAE (10-400 ${\mu}g$/ml) per se had no cytotoxic effect in unstimulated macrophages, but LJFAE concentration-dependently reduced NO, PGE2, TNF-, IL-l, and IL-6 production and COX-2 activity caused by stimulation of LPS. The levels of iNOS and COX-2 protein expressions were markedly suppressed by the treatment with LJFAE in a concentration dependent manner. Conclusions : These results suggest that LJFAE suppress the NO and PGE2production in macrophages by inhibiting iNOS and COX-2 expression and these properties may contribute to the anti-inflammatory activity of Lonicera japonica.

  • PDF