• Title/Summary/Keyword: proportional integral derivative

Search Result 223, Processing Time 0.025 seconds

CHEYSHEFF-HALLEY-LIKE METHODS IN BANACH SPACES

  • Argyros, Ioannis-K.
    • Journal of applied mathematics & informatics
    • /
    • v.4 no.1
    • /
    • pp.83-108
    • /
    • 1997
  • Chebysheff-Halley methods are probably the best known cubically convergent iterative procedures for solving nonlinear equa-tions. These methods however require an evaluation of the second Frechet-derivative at each step which means a number of function eval-uations proportional to the cube of the dimension of the space. To re-duce the computational cost we replace the second Frechet derivative with a fixed bounded bilinear operator. Using the majorant method and Newton-Kantorovich type hypotheses we provide sufficient condi-tions for the convergence of our method to a locally unique solution of a nonlinear equation in Banach space. Our method is shown to be faster than Newton's method under the same computational cost. Finally we apply our results to solve nonlinear integral equations appearing in radiative transfer in connection with the problem of determination of the angular distribution of the radiant-flux emerging from a plane radiation field.

Flux Position Estimation Method of IPMSM by Controlling Current Derivative at Zero Voltage Vector

  • Hosogaya, Yuji;Kubota, Hisao
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.1
    • /
    • pp.84-90
    • /
    • 2012
  • Various methods have been proposed to identify the flux position in an interior permanent magnet synchronous motor (IPMSM) without the use of mechanical sensors. To achieve this, a method that uses both the back electromotive force (EMF) and the saliency to identify the flux position in the IPMSM without the injection of high-frequency components at low speeds has been reported. This method was then extended in order to drive the motor with no load to a light load. We propose a combination of these methods with different proportional-integral (PI) controllers for controlling $di_{dest}$/dt and $di_{qest}$/dt. We also introduce compensation values $F_L$ and $F_H$ to reduce the position error when the estimation rule is being selected.

EA-based Tuning of a PID Controller with an Anti-windup Scheme (안티와인드업 기법을 가지는 PID 제어기의 EA 기반 동조)

  • Jin, Gang-Gyoo;Park, Dong-Jin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.10
    • /
    • pp.867-872
    • /
    • 2013
  • Many practical processes in industry have nonlinearities of some forms. One commonly encountered form is actuator saturation which can cause a detrimental effect known as integrator windup. Therefore, a strategy of attenuating the effects of integrator windup is required to guarantee the stability and performance of the overall control system. In this paper, optimal tuning of a PID (Proportional-Integral-Derivative) controller with an anti-windup scheme is presented to enhance the tracking performance of the PID control system in the presence of the actuator saturation. First, we investigate effective anti-windup schemes. Then, the parameters of both the PID controller and the anti-windup scheme are optimally tuned by an EA (Evolutionary Algorithm) such as the IAE (Integral of Absolute Error) is minimized. A set of simulation works on two high-order processes demonstrates the benefit of the proposed method.

A PI-PD Controller Design for the Position Control of a Motor (전동기 위치 제어를 위한 PI-PD 제어기 설계)

  • Jang, Ju-Hyeong;Kim, Sang-Hoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.1
    • /
    • pp.60-66
    • /
    • 2017
  • This paper presents the design of a proportional-integral (PI)-proportional-derivative (PD) position controller without using a speed controller in motor drive systems. Unlike the existing PI-PD position controller design methods, the proposed controller is designed by reducing the entire position control system to a second-order transfer function. Thus, the gain values for the PI-PD position controller can be determined easily by a given bandwidth of the position controller. The PI-PD position controller designed by the proposed method is adopted for position control in an interior permanent magnet synchronous motor drive system to confirm the validity of the proposed design method. The effectiveness of the proposed design method is confirmed through experiments.

Automated Drug Infusion System Based on Fuzzy PID Control during Acute Hypotension

  • Kashihara, Koji
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.186-189
    • /
    • 2005
  • In a clinical setting, developing a reliable method for the automated drug infusion system would improve a drug therapy under the unexpected and acute changes of hemodynamics. The conventional proportional-integral-derivative (PID) controller might not be able to achieve maximum performance because of the unexpected change of the intra- and inter-patient variability. The fuzzy PID control and the conventional PID control were tested under the unexpected response of mean arterial blood pressure (MAP) to a vasopressor agent during acute hypotension. Compared with the conventional PID control, the fuzzy PID control performed the robust MAP regulation regardless of the unexpected MAP response (average absolute value of the error between target value and actual MAP: 0.98 vs. 2.93 mmHg in twice response of the expected MAP and 2.59 vs. 9.75 mmHg in three-times response of the expected MAP). The result was due to the adaptive change of the proportional gain in PID parameters.

  • PDF

A Model reference adaptive speed control of marine diesel engine by fusion of PID controller and fuzzy controller

  • Yoo, Heui-Han
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.7
    • /
    • pp.791-799
    • /
    • 2006
  • The aim of this paper is to design an adaptive speed control system of a marine diesel engine by fusion of hard computing based proportional integral derivative (PID) control and soft computing based fuzzy control methods. The model of a marine diesel engine is considered as a typical non oscillatory second order system. When its model and the actual marine diesel engine ate not matched, it is hard to control the speed of the marine diesel engine. Therefore, this paper proposes two methods in order to obtain the speed control characteristics of a marine diesel engine. One is an efficient method to determine the PID control parameters of the nominal model of a marine diesel engine. Second is a reference adaptive speed control method that uses a fuzzy controller and derivative operator for tracking the nominal model of the marine diesel engine. It was found that the proposed PID parameters adjustment method is better than the Ziegler & Nichols' method, and that a model reference adaptive control is superior to using only PID controller. The improved control method proposed here, could be applied to other systems when a model of a system does not match the actual system.

Applying TID-PSS to Enhance Dynamic Stability of Multi-Machine Power Systems

  • Mohammadi, Ramin Shir;Mehdizadeh, Ali;Kalantari, Navid Taghizadegan
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.5
    • /
    • pp.287-297
    • /
    • 2017
  • Novel power system stabilizers (PSSs) have been proposed to effectively dampen low frequency oscillations (LFOs) in multi-machine power systems and have attracted increasing research interest in recent years. Due to this attention, recently, fractional order controllers (FOCs) have found new applications in power system stability issues. Here, a tilt-integral-derivative power system stabilizer (TID-PSS) is proposed to enhance the dynamic stability of a multi-machine power system by providing additional damping to the LFOs. The TID is an extended version of the classical proportional-integral-derivative (PID) applying fractional calculus. The design of the proposed three-parameter tunable TID-PSS is systematized as a nonlinear time domain optimization problem in which the tunable parameters are adjusted concurrently using a modified group search optimization (MGSO) algorithm. An integral of the time multiplied squared error (ITSE) performance index is considered as the objective function. The proposed stabilizer is simulated in the MATLAB/SIMULINK environment using the FOMCON toolbox and the dynamic performance is evaluated on a 3-machine 6-bus power system. The TID-PSS is compared with both classical PID-PSS (PID-PSS) and conventional PSS (CPSS) using eigenvalue analysis and time domain simulations. Sensitivity analyses are performed to assess the robustness of the proposed controller against large changes in system loading conditions and parameters. The results indicate that the proposed TID-PSS provides the better dynamic performance and robustness compared with the PID-PSS and CPSS.

Modelling a Stand-Alone Inverter and Comparing the Power Quality of the National Grid with Off-Grid System

  • Algaddafi, Ali;Brown, Neil;Rupert, Gammon;Al-Shahrani, Jubran
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.5 no.1
    • /
    • pp.35-42
    • /
    • 2016
  • Developments in power electronics have enabled the widespread application of Pulse Width Modulation (PWM) inverters, notably for connecting renewable systems to the grid. This study demonstrates that a high-quality power can be achieved using a stand-alone inverter, whereby the comparison between the power quality of the stand-alone inverter with battery storage (off-grid) and the power quality of the utility network is presented. Multi-loop control techniques for a single phase stand-alone inverter are used. A capacitor current control is used to give active damping and enhance the transient and steady state inverter performance. A capacitor current control is cheaper than the inductor current control, where a small current sensing resistor is used. The output voltage control is used to improve the system performance and also control the output voltage. The inner control loop uses a proportional gain current controller and the outer loop is implemented using internal model control proportional-integral-derivative to ensure stability. The optimal controls are achieved by using the Sisotool tool in MATLAB/Simulink. The outcome of the control scheme of the numerical model of the stand-alone inverter has a smooth and good dynamic performance, but also a strong robustness to load variations. The numerical model of the stand-alone inverter and its power quality are presented, and the power quality is shown to meet the IEEE 519-2014. Furthermore, the power quality of the off-grid system is measured experimentally and compared with the grid power, showing power quality of off-grid system to be better than that of the utility network.

Augmentation of Fractional-Order PI Controller with Nonlinear Error-Modulator for Enhancing Robustness of DC-DC Boost Converters

  • Saleem, Omer;Rizwan, Mohsin;Khizar, Ahmad;Ahmad, Muaaz
    • Journal of Power Electronics
    • /
    • v.19 no.4
    • /
    • pp.835-845
    • /
    • 2019
  • This paper presents a robust-optimal control strategy to improve the output-voltage error-tracking and control capability of a DC-DC boost converter. The proposed strategy employs an optimized Fractional-order Proportional-Integral (FoPI) controller that serves to eliminate oscillations, overshoots, undershoots and steady-state fluctuations. In order to significantly improve the error convergence-rate during a transient response, the FoPI controller is augmented with a pre-stage nonlinear error-modulator. The modulator combines the variations in the error and error-derivative via the signed-distance method. Then it feeds the aggregated-signal to a smooth sigmoidal control surface constituting an optimized hyperbolic secant function. The error-derivative is evaluated by measuring the output-capacitor current in order to compensate the hysteresis effect rendered by the parasitic impedances. The resulting modulated-signal is fed to the FoPI controller. The fixed controller parameters are meta-heuristically selected via a Particle-Swarm-Optimization (PSO) algorithm. The proposed control scheme exhibits rapid transits with improved damping in its response which aids in efficiently rejecting external disturbances such as load-transients and input-fluctuations. The superior robustness and time-optimality of the proposed control strategy is validated via experimental results.

A Study on the First Order Plus Time Delay Model Identification from Noisy Step Responses (노이즈가 있는 계단응답으로부터 일차시간지연모델 확인에 관한 연구)

  • Ju, Seungmin;Kim, Sung Jin;Byeon, Jeonguk;Chun, Daewoong;Sung, Su Whan;Lee, Jietae
    • Korean Chemical Engineering Research
    • /
    • v.46 no.5
    • /
    • pp.949-957
    • /
    • 2008
  • Estimating the first order plus time delay model on the basis of the step responses has been widely used in industry for the tuning of PID controllers. Even though various model identification methods from simple graphical approaches to complicated approaches based on least squares method have been proposed, simple approaches to incorporate noisy step responses are rarely available. In this research, we will compare and analyze recent approaches using the integrals of the step responses and develop an improved identification method to incorporate real situations more effectively.