• Title/Summary/Keyword: proportional hazards function

Search Result 32, Processing Time 0.026 seconds

The Comprehensive Proportional Hazards Model Incorporating Time-dependent Covariates for Water Pipes (상수관로에 대한 시간종속형 공변수를 포함한 포괄적 비례위험모형)

  • Park, Su-Wan
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.6
    • /
    • pp.445-455
    • /
    • 2009
  • In this paper proportional hazards models for the first through seventh break of 150 mm cast iron pipes in a case study area are established. During the modeling process the assumption of the proportional hazards for covariates on the hazards is examined to include the time-dependent covariate terms in the models. As a result, the pipe material/joint type and the number of customers are modeled as time-dependent for the first failure, and for the second failure only the number of customers is modeled as time-dependent. From the analysis on the baseline hazard functions the failure hazards are found to be generally increasing for the first and second failure, while the hazards of the third break and beyond showed a form of a bath-tub. Furthermore, the changes in the baseline hazard rates according to the time and number of break reflect that the general condition of the pipes is deteriorating. The factors causing pipe break and their effects are analyzed based on the estimated regression coefficients and their hazard ratios, and the constructed models are verified using the deviance residuals of the models.

GENERALIZED LINDLEY DISTRIBUTION USING PROPORTIONAL HAZARD FAMILY AND INFERENCE OF FAILURE TIME DATA

  • Ahmed AL-Adilee;Hawraa A. AL-Challabi;Hassanein Falah;Dalael Saad Abdul-Zahra
    • Nonlinear Functional Analysis and Applications
    • /
    • v.28 no.3
    • /
    • pp.793-800
    • /
    • 2023
  • In this paper, we propose a generalization of Lindley distribution (GLD) via a special structure that is concern with progressively Type-II right censoring and time failure data. We study the modern properties that we have built by such combination, for example, survival function, hazard function, moments, and estimation by non-Bayesian methods. Application on some selected data related to Lindley distribution (LD) and (ED) have been employed to find out the best distribution that can fit data comparing with the GLD.

Survival Function Estimation for the Proportional Hazards Regression Model

  • Cha, Young Joon
    • Journal of Korean Society for Quality Management
    • /
    • v.18 no.1
    • /
    • pp.9-20
    • /
    • 1990
  • The purpose of this paper is to propose the modified semiparametric estimators for survival function in the Cox's regression model with randomly censored data based on Tsiatis and Breslow estimators, and present their asymptotic variances estimates. The proposed estimators are compared to Tsiatis, Breslow, and Kaplan-Meier estimators through a small-sample Monte Carlo study. The simulation results show that the proposed estimators are preferred for small sample sizes.

  • PDF

A Comparison Study of the Test for Right Censored and Grouped Data

  • Park, Hyo-Il
    • Communications for Statistical Applications and Methods
    • /
    • v.22 no.4
    • /
    • pp.313-320
    • /
    • 2015
  • In this research, we compare the efficiency of two test procedures proposed by Prentice and Gloeckler (1978) and Park and Hong (2009) for grouped data with possible right censored observations. Both test statistics were derived using the likelihood ratio principle, but under different semi-parametric models. We review the two statistics with asymptotic normality and consider obtaining empirical powers through a simulation study. The simulation study considers two types of models the location translation model and the scale model. We discuss some interesting features related to the grouped data and obtain null distribution functions with a re-sampling method. Finally we indicate topics for future research.

Fitting competing risks models using medical big data from tuberculosis patients (전국 결핵 신환자 의료빅데이터를 이용한 경쟁위험모형 적합)

  • Kim, Gyeong Dae;Noh, Maeng Seok;Kim, Chang Hoon;Ha, Il Do
    • The Korean Journal of Applied Statistics
    • /
    • v.31 no.4
    • /
    • pp.529-538
    • /
    • 2018
  • Tuberculosis causes high morbidity and mortality. However, Korea still has the highest tuberculosis (TB) incidence and mortality among OECD countries despite decreasing incidence and mortality due to the development of modern medicine. Korea has now implemented various policy projects to prevent and control tuberculosis. This study analyzes the effects of public-private mix (PPM) tuberculosis control program on treatment outcomes and identifies the factors that affecting the success of TB treatment. We analyzed 130,000 new tuberculosis patient cohort from 2012 to 2015 using data of tuberculosis patient reports managed by the Disease Control Headquarters. A cumulative incidence function (CIF) compared the cumulative treatment success rates for each factor. We compared the results of the analysis using two popular types of competition risk models (cause-specific Cox's proportional hazards model and subdistribution hazard model) that account for the main event of interest (treatment success) and competing events (death).

Bayesian Semi-Parametric Regression for Quantile Residual Lifetime

  • Park, Taeyoung;Bae, Wonho
    • Communications for Statistical Applications and Methods
    • /
    • v.21 no.4
    • /
    • pp.285-296
    • /
    • 2014
  • The quantile residual life function has been effectively used to interpret results from the analysis of the proportional hazards model for censored survival data; however, the quantile residual life function is not always estimable with currently available semi-parametric regression methods in the presence of heavy censoring. A parametric regression approach may circumvent the difficulty of heavy censoring, but parametric assumptions on a baseline hazard function can cause a potential bias. This article proposes a Bayesian semi-parametric regression approach for inference on an unknown baseline hazard function while adjusting for available covariates. We consider a model-based approach but the proposed method does not suffer from strong parametric assumptions, enjoying a closed-form specification of the parametric regression approach without sacrificing the flexibility of the semi-parametric regression approach. The proposed method is applied to simulated data and heavily censored survival data to estimate various quantile residual lifetimes and adjust for important prognostic factors.

Multiprocess Discount Survival Models With Survival Times

  • Shim, Joo-Yong
    • Journal of the Korean Statistical Society
    • /
    • v.26 no.2
    • /
    • pp.277-288
    • /
    • 1997
  • For the analysis of survival data including covariates whose effects vary in time, the multiprocess discount survival model is proposed. The parameter vector modeling the time-varying effects of covariates is to vary between time intervals and its evolution between time intervals depends on the perturbation of the next time interval. The recursive estimation of the parameter vector can be obtained at the end of each time interval. The retrospective estimation of the survival function and the forecasting of the survival function of individuals of the specific covariates also can be obtained based on the information gathered until the end of the time interval.

  • PDF

A Statistical Methodology to Estimate the Economical Replacement Time of Water Pipes (상수관로의 경제적 교체시기를 산정하기 위한 통계적 방법론)

  • Park, Su-Wan
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.6
    • /
    • pp.457-464
    • /
    • 2009
  • This paper proposes methodologies for analyzing the accuracy of the proportional hazards model in predicting consecutive break times of water mains and estimating the time interval for economical water main replacement. By using the survival functions that are based on the proportional hazards models a criterion for the prediction of the consecutive pipe breaks is determined so that the prediction errors are minimized. The criterion to predict pipe break times are determined as the survival probability of 0.70 and only the models for the third through the seventh break are analyzed to be reliable for predicting break times for the case study pipes. Subsequently, the criterion and the estimated lower and upper bound survival functions of consecutive breaks are used in predicting the lower and upper bounds of the 95% confidence interval of future break times of an example water main. Two General Pipe Break Prediction Models(GPBMs) are estimated for an example pipe using the two series of recorded and predicted lower and upper bound break times. The threshold break rate is coupled with the two GPBMs and solved for time to obtain the economical replacement time interval.

Generating censored data from Cox proportional hazards models (Cox 비례위험모형을 따르는 중도절단자료 생성)

  • Kim, Ji-Hyun;Kim, Bongseong
    • The Korean Journal of Applied Statistics
    • /
    • v.31 no.6
    • /
    • pp.761-769
    • /
    • 2018
  • Simulations are important for survival analyses that deal with censored data. Cox models are widely used in survival analyses, therefore, we investigate how to generate censored data that can simulate the Cox model. Bender et al. (Statistics in Medicine, 24, 1713-1723, 2005) provided a parametric method for generating survival times, but we need to generate censoring times as well as survival times to simulate the censored data. In addition to the parametric method for generating censored data, a nonparametric method is also proposed and applied to a real data set.

A Statistical Methodology for Evaluating the Residual Life of Water Mains (상수관로의 잔존수명 평가를 위한 통계적 방법론)

  • Park, Suwan;Choi, Chang Log;Kim, Jeong Hyun;Bae, Cheol Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.3
    • /
    • pp.305-313
    • /
    • 2009
  • This paper provides a method for evaluating a residual life of water mains using a proportional hazard model(PHM). The survival time of individual pipe is defined as the elapsed time since installation until a break rate of individual pipe exceeds the Threshold Break Rate. A break rate of an individual pipe is estimated by using the General Pipe Break Model(GPBM). In order to use the GPBM effectively, improvement of the GPBM is presented in this paper by utilizing additional break data that is the cumulative number of pipe break of 0 for the time of installation and adjusting a value of weighting factor(WF). The residual lives and hazard ratios of the case study pipes of which the cumulative number of pipe breaks is more than one is estimated by using the estimated survival function. It is found that the average residual lives of the steel and cast iron pipes are about 25.1 and 21 years, respectively. The hazard rate of the cast iron pipes is found to be higher than the steel pipes until 20 years since installation. However, the hazard rate of the cast iron pipes become lower than the hazard rates of the steel pipes after 20 years since installation.