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Abstract
In this research, we compare the efficiency of two test procedures proposed by Prentice and Gloeckler (1978)

and Park and Hong (2009) for grouped data with possible right censored observations. Both test statistics were
derived using the likelihood ratio principle, but under different semi-parametric models. We review the two
statistics with asymptotic normality and consider obtaining empirical powers through a simulation study. The
simulation study considers two types of models the location translation model and the scale model. We discuss
some interesting features related to the grouped data and obtain null distribution functions with a re-sampling
method. Finally we indicate topics for future research.
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1. Introduction

In the survival analysis, the proportional hazards model (PHM) has been used frequently and applied
successfully since Cox (1972) proposed a PHM that has been developed extensively and modified suc-
cessfully for various statistical situations. However when the proportionality among hazard functions
may be suspicious, one may consider an additive hazards model (AHM) as an alternative to analysis
convenience and a possibly easy interpretation of the inferential result. To review the PHM and AHM
in some detailed fashion, let λ0 be the baseline hazard function and z, the p × 1 regression vector,
which is independent of the time t. Then the hazard function λ(t, z) for the PHM and AHM can be
represented with the p × 1 regression coefficient vector β as;

λ(t, z) = λ0 + exp[β′z], (1.1)
λ(t, z) = λ0 + β

′z, (1.2)

where the prime represents the transpose of a vector or matrix. We note that the AHM (1.2) can be
reminiscent of the shock model in reliability theory assuming that all arriving shocks to the system
are independent.

The PHM (1.1) is well-known to every statistician in the survival field; consequently, it would be
redundant to discuss the procedure any further. As an alternative model to the PHM (1.1), the AHM
(1.2) has not been widely used and popular because the conditional likelihood method proposed by
Cox (1972) cannot be applied to the AHM due to the structure of the hazard function (1.2). The AHM
(1.2) was initiated by Aalen (1980, 1989), who considered an inference procedure for λ0 and β by
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applying the least squares method instead of using the likelihood principle. Huffer and McKeague
(1991) and McKeague (1988) considered weighted least squares estimates for some optimality con-
sideration. Lin and Ying (1994) also proposed an estimate procedure for β using a counting process
used for the PHM as an ad hoc approach. McKeague and Sasieni (1994) developed partial parametric
AHM. Scheike (2002) investigated the AHM in this direction and proposed an inferential procedure.
For the multivariate data case, Yin and Cai (2004) considered inferences based on a marginal AHM
approach. Martinussen and Scheike (2006) reviewed extensively the AHM and suggested directions
for the research and application; however, Zeng and Cai (2010) considered a recurrent event for AHM.
Martinussen et al. (2011) provided the estimation of the treatment effect for the AHM while Gerds et
al. (2013) considered an estimation for a time-dependent concordance index for survival prediction
models with covariate dependent censoring.

It is easy to observe objects whether they fail or not periodically or under a time-schedule. For
example, after being exposed to the human immunodeficiency virus (HIV), the observation must be
carried out periodically since it usually takes several months for blood test results to indicate a HIV
negative or HIV positive status. In this case, the corresponding data set contains significant tied value
observations even though the underlying life-time distribution is continuous. This type of data set is
called grouped data and can be analyzed by a data-specific method. Heitjan (1989) reviewed exten-
sively the methodology and suggested several research directions. For right censored data, Prentice
and Gloeckler (1978) considered inferences about β under the PHM. Park (1993) proposed a class of
nonparametric tests for the linear model versus Neuhaus (1993) who modified the log-rank tests for
the grouped data. Park and Hong (2009) obtained test statistics for the grouped data with AHM under
the two sample scheme. Then it would be worthwhile to investigate and compare the efficiencies of
two test procedures under the PHM and AHM.

In this study, we consider to compare the efficiency between two nonparametric tests for the AHM
and PHM by obtaining the empirical powers through a simulation study. The rest of this paper is
organized in the following order. In the next section, we review the two test statistics for the AHM
and PHM with a discussion of the limiting distributions under the null hypothesis. Then we compare
the efficiency between the two tests under the location translation and scale models in Section 3. In
Section 4, we discuss some interesting features concerning the two models and suggest possible future
research topics.

2. Score Statistics for Testing H0 : β = 0H0 : β = 0H0 : β = 0

For this study, we consider p = 1. Suppose that we observe life time Ti for the ith individual with
some specific constant covariate, zi, i = 1, . . . , n. We assume that each subject is prone to be cen-
sored; consequently, the data set can be represented as {(Ti, δi, zi) , i = 1, . . . , n}, where δi stands for
the censoring status with values 0 or 1 if censored or not. We are concerned with the grouped data;
therefore, we assume the positive half real line, [0,∞) is partitioned into k number of sub-intervals
such as [0,∞) =

∪k
l=1[al−1, al), with a0 = 0 and ak = ∞. Then one can only have the information that

Ti is contained in one of the k sub-intervals for all i. We denote Dl and Cl as the indicate sets for the
uncensored and censored observations in the lth sub-interval [al−1, al), respectively. We also denote Rl

as the risk set of the lth sub-interval. Finally we denote dl and rl as the sizes of Dl and Rl, respectively,
l = 1, . . . , k. In this grouped continuous data, we assume that all the censorings occur at the end of
a sub-interval and that all deaths proceed any censoring in the same sub-interval. We assume that
all observations in the last sub-interval [ak−1,∞) are censored at ak−1 for technical reason with any
assumptions disccussed in detail later in the section. Finally we assume that the survival function and
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censoring distribution function are independent to avoid identifiability problem. The discrete model
in Kalbfleisch and Prentice (1980) that led Prentice and Gloeckler (1978) to propose a score statistic
to test H0 : β = 0 under the PHM, Cn as follows.

Cn =

k−1∑
l=1

log
(

rl

rl − dl

)  rl − dl

rl

∑
i∈Dl

zi −
∑

i∈Rl/Dl

zi

 ,
where log means the natural logarithm and Rl/Dl is the difference set between Rl and Dl for each l,
l = 1, . . . , k − 1. Then the variance σ2

C of Cn can be consistently estimated as

σ̂2
C =

k−1∑
l=1

log2
(

rl

rl − dl

)
rl(rl − dl)

rl

 1
rl

∑
i∈Rl

z2
i − z̄2

l

 ,
where z̄l = r−1

l
∑

i∈Rl
zi. Park and Hong (2009) also proposed a score statistic Wn in the spirit of

Kalbfleisch and Prentice (1980) to test H0 : β = 0 under the AHM as follows.

Wn =

k−1∑
l=1

(al − al−1)
rl

dl

∑
i∈Dl

zi − (al − al−1)
∑
i∈Rl

zi


=

k−1∑
l=1

(al − al−1)
rl

dl

∑
i∈Dl

zi −
dl

rl

∑
i∈Rl

zi


=

k−1∑
l=1

(al − al−1)

 rl − dl

dl

∑
i∈Dl

zi −
∑

i∈Rl/Dl

zi

 . (2.1)

Then a consistent estimate σ̂2
W of the limiting variance would be of the form

σ̂2
W =

k−1∑
l=1

(al − al−1)2 rl(rl − dl)
dl

 1
rl

∑
i∈Rl

z2
i − z̄2

l

 .
We note that the difference between Cn and Wn is the weight or score. Cn uses log[rl/(rl − dl)] while
Wn does al − al−1, the length of the lth sub-interval. Then the two standardized forms

Cn√
σ̂2

C

and
Wn√
σ̂2

W

converge in distribution into standard normal random variables. We can now test H0 : β = 0 with
the choice of an appropriate statistic. In the next section, we illustrate the procedures with a dataset
and compare the efficiency between Cn and Wn under various scenarios for the model by obtaining
empirical powers through a simulation study.

3. An Example and a Simulation Study

For the illustration of two procedures, we consider data reported by Embury et al. (1977) for the
length of remission (in weeks) for the two groups (maintenance chemotherapy and control) with
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Table 1: Some related quantities for Wn and Cn

Test Value Variance p-value
Wn 27.50 253.51 0.083
Cn 4.03 4.81 0.051

Table 2: Exponential distribution

Test (n1, n2) β
0.0 0.1 0.2 0.3 0.4 0.5

Wn
(20, 20) 0.045 0.071 0.189 0.279 0.533 0.607
(20, 30) 0.055 0.097 0.198 0.297 0.494 0.610

Cn
(20, 20) 0.046 0.071 0.116 0.198 0.319 0.432
(20, 30) 0.070 0.094 0.149 0.240 0.351 0.459

Table 3: Weibull (α = 2) distribution

Test (n1, n2) β
0.0 0.1 0.2 0.3 0.4 0.5

Wn
(20, 20) 0.040 0.083 0.208 0.403 0.608 0.802
(20, 30) 0.041 0.075 0.195 0.408 0.626 0.795

Cn
(20, 20) 0.062 0.106 0.209 0.373 0.565 0.727
(20, 30) 0.060 0.115 0.228 0.398 0.594 0.769

acute myelogenous leukemia patients. The length of remission for each patient was measured by
week; consequently, the data set contains several tied observations and it would be suitable to use the
test procedures based on Wn or Cn. The objective of the experiment was to see if the maintenance
chemotherapy prolongs the length of remission. The data has been summarized as:

Control group : 5, 5, 8, 8, 12, 16+, 23, 27, 30, 33, 43, 45,
Maintenance group : 9, 13, 13+, 18, 23, 28+, 31, 34, 45+, 48, 161+,

where + indicates censored observation. We note that this is a two-sample problem. Therefore by
allocating 0 or 1 to covariate zi for the ith individual according as from the control or maintenance
chemotherapy group in (2.1). Table 1 summarized all results.

In the following, we conduct a simulation study to compare the efficiency between Cn and Wn

under the two-sample problem setting. Therefore one can choose 0 or 1 for the value of a covariate zi

according as the observation Ti comes from the first or second sample. For this study, we considered
two cases of models for any two random variables X and Y that have some real number β,

Y = β + X (3.1)

and

Y = (1 + β)X. (3.2)

Tables 2–5 summarize the results under the model (3.1) and Tables 6–9, those under the model (3.2).
We note that β in (3.1) is the location translation parameter while β in (3.2) acts as a scale parameter.
Thus we compare the efficiency between Cn and Wn by varying the values of β. For the underly-
ing distributions, we considered Weibull and gamma distributions. The Weibull distribution has its
probability density function defined as for any x > 0 and α > 0,

f (x) = αxα−1 exp
[−xα

]
.
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Table 4: Weibull (α = 4/5) distribution

Test (n1, n2) β
0.0 0.1 0.2 0.3 0.4 0.5

Wn
(20, 20) 0.059 0.074 0.183 0.243 0.498 0.546
(20, 30) 0.045 0.091 0.188 0.251 0.509 0.592

Cn
(20, 20) 0.056 0.085 0.145 0.201 0.306 0.392
(20, 30) 0.060 0.094 0.140 0.222 0.327 0.422

Table 5: Gamma distribution

Test (n1, n2) β
0.0 0.1 0.2 0.3 0.4 0.5

Wn
(20, 20) 0.052 0.087 0.170 0.332 0.487 0.663
(20, 30) 0.059 0.078 0.407 0.468 0.699 0.898

Cn
(20, 20) 0.074 0.085 0.150 0.249 0.389 0.521
(20, 30) 0.067 0.092 0.335 0.468 0.697 0.783

Table 6: Exponential distribution

Test (n1, n2) β
0.0 0.1 0.2 0.3 0.4 0.5

Wn
(20, 20) 0.045 0.051 0.069 0.080 0.106 0.140
(20, 30) 0.055 0.074 0.098 0.125 0.150 0.176

Cn
(20, 20) 0.046 0.060 0.073 0.101 0.131 0.163
(20, 30) 0.070 0.084 0.103 0.135 0.166 0.214

We note that α = 1 implies exponential distribution. We considered three different values of α, α = 1
(Tables 2 and 6), α = 2 (Tables 3 and 7) and α = 4/5 (Tables 4 and 8) in this simulation study. For
the gamma distribution (Tables 5 and 9), we chose the following one. For x > 0, we have

f (x) =
x−

1
2

Γ(1/2)2
1
2

exp
[
− x

2

]
.

For the censored distribution, we considered the exponential distribution with a mean 2 for all cases in
order to avoid excessive censoring. Sample sizes were chosen as (20, 20) and (20, 30) and we varied
the value of β from 0 to 0.5 by increment with 0.1 for the first sample while fixed as 0 for the second.
Consequently, the two distributions F and G coincides when β = 0 in the tables for the first sample
and also when the null hypothesis holds when β = 0. We also chose a partition of [0,∞) for grouping
as [0, 0.2), . . . , [1.8, 2.0), [2.0,∞), i.e., 11 sub-intervals. For each case, we obtained empirical power
based on 1,000 simulations. The simulations were conducted with SAS/IML on PC version and the
nominal significance level is 0.05.

First, we should note that we cannot compare empirical powers among distributions since the
random numbers for each case have not been generated under a unified standard version because the
mean and variance of the Weibull distribution cannot be obtained explicitly except for α = 1. The
two different sample sizes show similar trends in varying with empirical powers. However, we often
see that Wn achieves higher performance under the location translation model (3.1) whereas Cn shows
better performance for (3.2) as expected. Therefore a test based on Wn may be a reliable alternative
when the proportional hazards assumption fails (especially when the location shift holds) and will be
examined further in the next section.
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Table 7: Weibull (α = 2) distribution

Test (n1, n2) β
0.0 0.1 0.2 0.3 0.4 0.5

Wn
(20, 20) 0.040 0.057 0.098 0.149 0.218 0.287
(20, 30) 0.041 0.053 0.097 0.157 0.224 0.303

Cn
(20, 20) 0.062 0.093 0.154 0.261 0.391 0.490
(20, 30) 0.060 0.108 0.187 0.298 0.432 0.540

Table 8: Weibull (α = 4/5) distribution

Test (n1, n2) β
0.0 0.1 0.2 0.3 0.4 0.5

Wn
(20, 20) 0.059 0.063 0.066 0.087 0.106 0.122
(20, 30) 0.045 0.074 0.091 0.106 0.130 0.145

Cn
(20, 20) 0.056 0.064 0.073 0.092 0.117 0.144
(20, 30) 0.060 0.078 0.097 0.114 0.131 0.155

Table 9: Gamma distribution

Test (n1, n2) β
0.0 0.1 0.2 0.3 0.4 0.5

Wn
(20, 20) 0.052 0.061 0.085 0.087 0.131 0.233
(20, 30) 0.059 0.065 0.085 0.089 0.146 0.241

Cn
(20, 20) 0.074 0.080 0.103 0.170 0.245 0.324
(20, 30) 0.067 0.077 0.114 0.189 0.263 0.341

4. Concluding Remarks

In this section, we discuss some interesting aspects for the tests under the models (1.1) and (1.2).
For this, we consider the case of equal length of sub-intervals. Then under the two-sample problem
setting, we note that Wn in (2.1) can be re-written as

Wn =

k−1∑
l=1

(r2ld1l − r1ld2l) , (4.1)

where r jl and d jl denote the size of risk set and the number of deaths in the lth sub-interval of the jth

sample, respectively, j = 1, 2. We note that Wn in (4.1) is just the Gehan statistic for the grouped data.
Therefore one may consider that (2.1) is a modification of the Gehan statistic for the grouped case.
The Gehan test is an extension of the Wilcoxon test for censored data; consequently, the Gehan test
must be locally the most powerful against the location translation alternatives (Gill, 1980). Therefore
the AHM has more empirical power than PHM under the model (3.1) and PHM does more power
under (3.2) in the previous section. When dl is small relative to rl, we note that we may have

log
rl

rl − dl
≈ dl

rl − dl
. (4.2)

By substituting (4.2) in Cn for log(rl/(rl − dl)) for each l, l = 1, . . . , k− 1, we can see that Cn is exactly
the same statistic as proposed by Cox (1972). Therefore, when the length of sub-intervals are very
fine, then a consideration of Cn instead of Cox’s form would be meaningless. Finally we note that
there is one uncensored observation at most in each sub-interval that corresponds to the no tied-value
case; consequently, the assumption for the allowance of discontinuity of hazard function disappears.
When we construct the test statistic Wn for the model (1.2), we assumed that all observations in the
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last sub-interval [ak−1,∞) are censored at ak−1, which is the beginning point of the last sub-interval.
This means that the last sub-interval [ak−1,∞) should not contain any observations. The reason for this
is as follows. First, we note that the length of the last sub-interval is infinity. If there is any censored
or uncensored observation in the last sub-interval, then the length of the last sub-interval should be
included in Wn, which is an absurd expression; in addition, the derivation of Wn becomes impossible
for the censored observations in the last sub-interval if we maintain the assumption that the censoring
occurs at the end of each sub-interval. However such an assumption becomes insignificant and cannot
be applied for the real world in the real experiment because a researcher always observes the objects
during a finite time period. For the null distribution, we considered the asymptotic normality based on
large sample approximation, which is the standard way of consideration for the null distribution of any
given test statistic when dealing with the data included in censored observations. One may consider
a re-sampling approach such as the permutation principle (Good, 2000) to obtain a null distribution.
Park (1993) and Neuhaus (1993) considered the application of the permutation principle to obtain the
null distribution of test statistics for right censored and grouped data. However, one must include the
assumption of the equality of unknown censoring distributions (which are of nuisance in the statistical
inferences) in the null hypothesis if one applies the permutation principle for the censored data. The
resulting permutation test is known as exact but conditional. For the AHM (1.2), we note that if the
two hazard functions λ0(t) and λ1(t) have the following relation,

λ(t) = λ0(t) + λ1(t),

then one may consider the survival function S (t) corresponding to λ(t) as

S (t) = S 0(t)S 1(t),

where S 0(t) and S 1(t) are the independent survival functions that correspond to λ0(t) and λ1(t) respec-
tively. One may conclude that the AHM is a sum of several hazard functions whose distributions are
independent and it is worthwhile to investigate this relationship more deeply in the near future.
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