• Title/Summary/Keyword: property of quadrature

Search Result 20, Processing Time 0.025 seconds

An Analysis of Electromagnetic Wave Scattering for the Elliptic-Multi Layer Dielectric Cylinders (다층타원 유전체주의 전자파 산란 해석)

  • 박동희;김정기
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.2 no.3
    • /
    • pp.26-31
    • /
    • 1991
  • The scattering property of TMz illuminated a elliptic dielectric cylinders with arbitrary cross section are analyzed by the boundary element techniques. The boundary element equations are for- mulated via Maxwell's equations, weighted residual of Green's theorem, and the boundary conditions. The unknown surface fields on the boundaries are then calculated by the boundary element integral equations. Once the surface fields are found, the scattered fields in far-zone and scattering widths (SW) are readily determined. To show the validity and usefulness of this formulation, computations are compared with those obtained using analytical method and one layer circular cylinder. As exten- sion to arbitrary cross-sectioned cylinders, plane wave scattering from a elliptic dielectric cylinders are numerically analyzed. A general computer program has been developed using the quadratic ele- ments(Higher order borndary elements) and the Gaussian quadrature.

  • PDF

A Complex Escalator Equalizer for Quadrature Modulation Systems (직교변조 시스템을 위한 복소 에스컬레이터 Equalizer)

  • 김남용
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.7
    • /
    • pp.47-53
    • /
    • 2004
  • In this paper we introduce a complex escalator (ESC) structure-Equalizer and investigate its performance in complex channels in QPSK undulation systems. The proposed complex equalizer has the complete orthogonalization property and is independent of eigenvalue spread ratio (ESR) of channel. The proposed complex ESC equalizer shows as 7 times faster convergence speed as that of the conventional complex TDL equalizer algorithms in a complex channel model for QPSK systems.

Experimental consideration of multi -order sampling or digital beamforming (디지털 빔포밍을 위한 다차 샘플링 방법의 실험적 고찰)

  • Na, B.Y.;Jeong, M.K.;Ahn, Y.B.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.11
    • /
    • pp.563-566
    • /
    • 1997
  • In this paper, several bandwidth sampling methods were compared in which contains "multi-order sampling", which was proposed or envelope detections in RF ultrasonic signals by a computer simulation and on experiment quadrature sampling method. The second-order sampling method were compared with it. As a conclusion, a multi-order sampling method, especially 5th order sampling method showed quite good envelope detection property. This means that more economical and quite good performance digital beamforming system can be built by adopting this new bandwidth sampling method.

  • PDF

16kbps Windeband Sideband Speech Codec (16kbps 광대역 음성 압축기 개발)

  • 박호종;송재종
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.1
    • /
    • pp.5-10
    • /
    • 2002
  • This paper proposes new 16 kbps wideband speech codec with bandwidth of 7 kHz. The proposed codec decomposes the input speech signal into low-band and high-band signals using QMF (Quadrature Mirror Filter), then AMR (Adaptive Multi Rate) speech codec processes the low-band signal and new transform-domain codec based on G.722.1 wideband cosec compresses the high-band signal. The proposed codec allocates different number of bits to each band in an adaptive way according to the property of input signal, which provides better performance than the codec with the fixed bit allocation scheme. In addition, the proposed cosec processes high-band signal using wavelet transform for better performance. The performance of proposed codec is measured in a subjective method. and the simulations with various speech data show that the proposed coders has better performance than G.722 48 kbps SB-ADPCM.

An Efficient 2D Discrete Wavelet Transform Filter Design Using Lattice Structure (Lattice 구조를 갖는 효율적인 2차원 이산 웨이블렛 변환 필터 설계)

  • Park, Tae-Geun;Jeong, Seon-Gyeong
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.6
    • /
    • pp.59-68
    • /
    • 2002
  • In this paper, we design the two-dimensional Discrete Wavelet Transform (2D DWT) filter that is widely used in various applications such as image compression because it has no blocking effects and relatively high compression rate. The filter that we used here is two-channel four-taps QMF(Quadrature Mirror Filter) Lattice filter with PR (Perfect Reconstruction) property. The proposed DWT architecture, with two consecutive inputs shows an efficient performance with a minimum of such hardware resources as multipliers, adders, and registers due to a simple scheduling. The proposed architecture was verified by the RTL simulation, and utilizes the hardware 100%. Our architecture shows a relatively high performance with a minimum hardware when compared with other approaches. An efficient memory mapping and address generation techniques are introduced and the fixed-point arithmetic analysis for minimizing the PSNR degradation due to quantization is discussed.

Rotationally Invariant Space-Time Trellis Codes with 4-D Rectangular Constellations for High Data Rate Wireless Communications

  • Sterian, Corneliu Eugen D.;Wang, Cheng-Xiang;Johnsen, Ragnar;Patzold, Matthias
    • Journal of Communications and Networks
    • /
    • v.6 no.3
    • /
    • pp.258-268
    • /
    • 2004
  • We demonstrate rotationally invariant space-time (ST) trellis codes with a 4-D rectangular signal constellation for data transmission over fading channels using two transmit antennas. The rotational invariance is a good property to have that may alleviate the task of the carrier phase tracking circuit in the receiver. The transmitted data stream is segmented into eight bit blocks and quadrature amplitude modulated using a 256 point 4-D signal constellation whose 2-D constituent constellation is a 16 point square constellation doubly partitioned. The 4-D signal constellation is simply the Cartesian product of the 2-D signal constellation with it-self and has 32 subsets. The partition is performed on one side into four subsets A, B, C, and D with increased minimum-squared Euclidian distance, and on the other side into four rings, where each ring includes four points of equal energy. We propose both linear and nonlinear ST trellis codes and perform simulations using an appropriate multiple-input multiple-output (MIMO) channel model. The 4-D ST codes constructed here demonstrate about the same frame error rate (FER) performance as their 2-D counterparts, having however the added value of rotational invariance.

3D thermo-hydro-mechanical coupled discrete beam lattice model of saturated poro-plastic medium

  • Hadzalic, Emina;Ibrahimbegovic, Adnan;Dolarevic, Samir
    • Coupled systems mechanics
    • /
    • v.9 no.2
    • /
    • pp.125-145
    • /
    • 2020
  • In this paper, we present a 3D thermo-hydro-mechanical coupled discrete beam lattice model of structure built of the nonisothermal saturated poro-plastic medium subjected to mechanical loads and nonstationary heat transfer conditions. The proposed model is based on Voronoi cell representation of the domain with cohesive links represented as inelastic Timoshenko beam finite elements enhanced with additional kinematics in terms of embedded strong discontinuities in axial and both transverse directions. The enhanced Timoshenko beam finite element is capable of modeling crack formation in mode I, mode II and mode III. Mode I relates to crack opening, mode II relates to in-plane crack sliding, and mode III relates to the out-of-plane shear sliding. The pore fluid flow and heat flow in the proposed model are governed by Darcy's law and Fourier's law for heat conduction, respectively. The pore pressure field and temperature field are approximated with linear tetrahedral finite elements. By exploiting nodal point quadrature rule for numerical integration on tetrahedral finite elements and duality property between Voronoi diagram and Delaunay tetrahedralization, the numerical implementation of the coupling results with additional pore pressure and temperature degrees of freedom placed at each node of a Timoshenko beam finite element. The results of several numerical simulations are presented and discussed.

An Analysis of Electromagnetic Field Scattering for the Dielectric Cylinders (유전체주의 전자장 산란 해석)

  • 박동희;김정기
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.17 no.2
    • /
    • pp.181-186
    • /
    • 1992
  • The scattering property of TMz illuminated perfectly conducting and dielectric cylinders of arbitrary cross section are analyzed by the boundary element techniques. The boundary element equations are formulated via Maxwell’s equations, weighted residual or Green’s theorem, and the boundary conditions. The unknown surface fields on the boundaries are then calculated by the boundary element integral equations. Once the surface fields are found, the scattered fields in from a perfectly conducting circular and elliptic cylinders, a dielectric circular and elliptic cylinders are numerically analyzed. A general computer program has been developed using the quadratic elements(higher order boundary elements) and the Gaussian quadrature.

  • PDF

Analysis of 2-D Potential Problem with L-shape Domain by p-Convergent Boundary Element Method (p-수렴 경계요소법에 의한 L-형 영역을 갖는 2차원 포텐셜 문제 해석)

  • Woo, Kwang-Sung;Jo, Jun-Hyung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.1
    • /
    • pp.117-124
    • /
    • 2009
  • The p-convergent boundary element method has been proposed to analyze two-dimensional potential problem on the basis of high order Legendre shape functions that have different property comparing with the shape functions in conventional boundary element method. The location of nodes corresponding to high order shape function are not defined along the boundary, called by nodeless node, similar to the p-convergent finite element method. As the order of shape function increases, the collocation point method is used to solve linear simultaneous equations. The collocation patterns of p-convergent boundary element method consist of non-symmetric hierarchial or symmetric non-hierarchical. As the order of shape function increases, the number of collocation point increases. The singular integral that appears in p-convergent boundary element has been calculated by special numeric quadrature technique and semi-analytical integration technique. The L-shape domain problem including singularity in the vicinity of reentrant comer is analyzed and the numerical results show that the relative error is smaller than $10^{-2}%$ range as compared with other results in literatures. In case of same condition, the symmetric p-collocation point pattern shows high accuracy of solution.

Fluid-structure interaction system predicting both internal pore pressure and outside hydrodynamic pressure

  • Hadzalic, Emina;Ibrahimbegovic, Adnan;Dolarevic, Samir
    • Coupled systems mechanics
    • /
    • v.7 no.6
    • /
    • pp.649-668
    • /
    • 2018
  • In this paper, we present a numerical model for fluid-structure interaction between structure built of porous media and acoustic fluid, which provides both pore pressure inside porous media and hydrodynamic pressures and hydrodynamic forces exerted on the upstream face of the structure in an unified manner and simplifies fluid-structure interaction problems. The first original feature of the proposed model concerns the structure built of saturated porous medium whose response is obtained with coupled discrete beam lattice model, which is based on Voronoi cell representation with cohesive links as linear elastic Timoshenko beam finite elements. The motion of the pore fluid is governed by Darcy's law, and the coupling between the solid phase and the pore fluid is introduced in the model through Biot's porous media theory. The pore pressure field is discretized with CST (Constant Strain Triangle) finite elements, which coincide with Delaunay triangles. By exploiting Hammer quadrature rule for numerical integration on CST elements, and duality property between Voronoi diagram and Delaunay triangulation, the numerical implementation of the coupling results with an additional pore pressure degree of freedom placed at each node of a Timoshenko beam finite element. The second original point of the model concerns the motion of the outside fluid which is modeled with mixed displacement/pressure based formulation. The chosen finite element representations of the structure response and the outside fluid motion ensures for the structure and fluid finite elements to be connected directly at the common nodes at the fluid-structure interface, because they share both the displacement and the pressure degrees of freedom. Numerical simulations presented in this paper show an excellent agreement between the numerically obtained results and the analytical solutions.